Skip to main content

Metabolomics and Its Applications to Personalized Medicine

  • Conference paper
  • First Online:
EKC 2019 Conference Proceedings (EKC 2019)

Abstract

The basis of this review is to evaluate the field of metabolomics. The strategies used in this field will be explored to understand the process of biomarker discovery, especially those with clinical value, giving rise to personalized medicine. Metabolomics is the process of profiling metabolites in a biological system, due to this it has significant potential in decoding the ultimate product of the genomic processes. It is becoming increasingly clear that the field has possible limitations that is resolved by a potential metabolomic assay that has the ability to directly target a selection of metabolites combating the issue of variability amongst samples and allow for reproducible data. Recently, an increased effort has been made to formulate a universally accepted approach. Enabling the field to progress into to a more clinical-based setting. Diseases in a biological system tend to have a “signature” of sorts: a fluctuating metabolite profile is a representation of cellular activity. Monitoring such fluctuations allows for health care that accounts for external factors such as (i) lifestyle, (ii) environmental factors and (iii) genetic information in advance of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaddurah-Daouk R, Weinshilboum R, Pharmacometabolomics Research (2015, July) Metabolomic signatures for drug response phenotypes: pharmacometabolomics enables precision medicine. Clin Pharmacol Ther 98(1):71–75. https://doi.org/10.1002/cpt.134

    Article  Google Scholar 

  2. Johnson CH, Ivanisevic J, Siuzdak G (2016, July) Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol 17(7):451–459. https://doi.org/10.1038/nrm.2016.25

    Article  Google Scholar 

  3. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007, October 18) The human microbiome project. Nature 449(7164):804–810. https://doi.org/10.1038/nature06244

    Article  ADS  Google Scholar 

  4. Riekeberg E, Powers R (2017) New frontiers in metabolomics: from measurement to insight. F1000Res 6:1148. https://doi.org/10.12688/f1000research.11495.1

    Article  Google Scholar 

  5. ter Kuilea BH, Westerho HV (2001) Transcriptome meets metabolome hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett 500:169–171

    Article  Google Scholar 

  6. Guo L et al (2015, September 1) Plasma metabolomic profiles enhance precision medicine for volunteers of normal health. Proc Natl Acad Sci U S A 112(35):E4901–E4910. https://doi.org/10.1073/pnas.1508425112

    Article  Google Scholar 

  7. Duarte IF, Diaz SO, Gil AM (2014, May) NMR metabolomics of human blood and urine in disease research. J Pharm Biomed Anal 93:17–26. https://doi.org/10.1016/j.jpba.2013.09.025

    Article  Google Scholar 

  8. Wang L, Liu X, Yang Q (2018) Application of metabolomics in cancer research: as a powerful tool to screen biomarker for diagnosis, monitoring and prognosis of cancer. Biom J 1(9). https://doi.org/10.21767/2472-1646.100050

  9. Marshall DD, Powers R (2017, May) Beyond the paradigm: combining mass spectrometry and nuclear magnetic resonance for metabolomics. Prog Nucl Magn Reson Spectrosc 100:1–16. https://doi.org/10.1016/j.pnmrs.2017.01.001

    Article  Google Scholar 

  10. Wiese S, Reidegeld KA, Meyer HE, Warscheid B (2007, February) Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7(3):340–350. https://doi.org/10.1002/pmic.200600422

    Article  Google Scholar 

  11. Pan Z, Raftery D (2007, January) Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal Bioanal Chem 387(2):525–527. https://doi.org/10.1007/s00216-006-0687-8

    Article  Google Scholar 

  12. Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH (2017, February) Proteomics: technologies and their applications. J Chromatogr Sci 55(2):182–196. https://doi.org/10.1093/chromsci/bmw167

    Article  Google Scholar 

  13. Wolfender JL, Marti G, Thomas A, Bertrand S (2015, February 20) Current approaches and challenges for the metabolite profiling of complex natural extracts. J Chromatogr A 1382:136–164. https://doi.org/10.1016/j.chroma.2014.10.091

    Article  Google Scholar 

  14. Tessitore A et al (2013) Serum biomarkers identification by mass spectrometry in high-mortality tumors. Int J Proteomics 2013:125858. https://doi.org/10.1155/2013/125858

    Article  Google Scholar 

  15. Dettmer K (2007) Mass spectrometry-based metabolomics. Mass spectrometry review. NIH Public Access 26(1):51–78

    Google Scholar 

  16. de Antignac JP, Wasch K, De Monteau F, Brabander H, Andre F, Le Bizec B (2005) The ion suppression phenomenon in liquid chromatography–mass spectrometry and its consequences in the field of residue analysis. Anal Chim Acta 529(1–2):129–136. https://doi.org/10.1016/j.aca.2004.08.055

    Article  Google Scholar 

  17. Kell DB (2004, June) Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 7(3):296–307. https://doi.org/10.1016/j.mib.2004.04.012

    Article  Google Scholar 

  18. Bingol K, Bruschweiler R (2015, September) Two elephants in the room: new hybrid nuclear magnetic resonance and mass spectrometry approaches for metabolomics. Curr Opin Clin Nutr Metab Care 18(5): 471–477. [Online]. Available https://www.ncbi.nlm.nih.gov/pubmed/26154280

  19. Dumez JN et al (2015, September 7) Hyperpolarized NMR of plant and cancer cell extracts at natural abundance. Analyst 140(17):5860–5863. https://doi.org/10.1039/c5an01203a

    Article  ADS  Google Scholar 

  20. Ardenkjær-Larsen JH (2003) Increase in signal-to-noise ratio of +10,000 times in liquid state NMR. PNAS 100(18):10158–10163

    Article  ADS  Google Scholar 

  21. Mark CB, Does D, Allen P, Snyder R (1998) Multi-component T1 relaxation and magnetisation transfer in peripheral nerve. Magn Reson Imaging 16(9):1033–1041

    Article  Google Scholar 

  22. Dutta P, Martinez GV, Gillies RJ (2013, September 1) A new horizon of DNP technology: application to in-vivo (13)C magnetic resonance spectroscopy and imaging. Biophys Rev 5(3):271–281. https://doi.org/10.1007/s12551-012-0099-2

    Article  Google Scholar 

  23. Schroeder MA (2008) In vivo assessment of pyruvate dehydrogenase flux in the heart using hyperpolarized carbon-13 magnetic resonance. PNAS 105(33):12051–12056

    Article  ADS  Google Scholar 

  24. Trivedi DK, Hollywood KA, Goodacre R (2017, March) Metabolomics for the masses: the future of metabolomics in a personalized world. New Horiz Transl Med 3(6):294–305. https://doi.org/10.1016/j.nhtm.2017.06.001

    Article  Google Scholar 

  25. Misra BB (2018, April) New tools and resources in metabolomics: 2016–2017. Electrophoresis 39(7):909–923. https://doi.org/10.1002/elps.201700441

    Article  Google Scholar 

  26. Karaman İ, Nørskov NP, Yde CC, Hedemann MS, Bach Knudsen KE, Kohler A (2014) Sparse multi-block PLSR for biomarker discovery when integrating data from LC–MS and NMR metabolomics. Metabolomics 11(2):367–379. https://doi.org/10.1007/s11306-014-0698-

    Article  Google Scholar 

  27. Boccard J, Rutledge DN (2013, March 26) A consensus orthogonal partial least squares discriminant analysis (OPLS-DA) strategy for multiblock Omics data fusion. Anal Chim Acta 769:30–39. https://doi.org/10.1016/j.aca.2013.01.022

    Article  Google Scholar 

  28. Broadhurst DI, Kell DB (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2(4):171–196. https://doi.org/10.1007/s11306-006-0037-z

    Article  Google Scholar 

  29. Poste G (2011) Bring on the biomarkers. Nature, Comment 469: 156–157, online 12 Jan 2011. https://doi.org/10.1038/469156a

  30. Bonham VL, Callier SL, Royal CD (2016) Will precision medicine move us beyond race? N Engl J Med 374(21):2003–2005. https://doi.org/10.1056/NEJMp1511294

    Article  Google Scholar 

  31. Dunn WB et al (2015) Molecular phenotyping of a UK population: defining the human serum metabolome. Metabolomics 11:9–26. https://doi.org/10.1007/s11306-014-0707-1

    Article  MathSciNet  Google Scholar 

  32. O’Neill J (2016) Tackling drug-resistant infections globally. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf

  33. Trupp M et al (2012) Metabolomics reveals amino acids contribute to variation in response to simvastatin treatment. PLoS One 7(7):e38386. https://doi.org/10.1371/journal.pone.0038386

    Article  ADS  Google Scholar 

  34. Armstrong AW et al (2014) Metabolomics in psoriatic disease: pilot study reveals metabolite differences in psoriasis and psoriatic arthritis. F1000Res 3(248):1–15. https://doi.org/10.12688/f1000research.4709.1

    Article  Google Scholar 

  35. Sitter B (2013) Metabolic changes in psoriatic skin under topical corticosteroid treatment. BMC Dermatol 13(8):471–5945

    Google Scholar 

  36. Barabasi AL, Gulbahce N, Loscalzo J (2011, January) Network medicine: a network-based approach to human disease. Nat Rev Genet 12(1):56–68. https://doi.org/10.1038/nrg2918

    Article  Google Scholar 

  37. Moeschler JB (2013) Chapter 37 – Neurodevelopmental disabilities: global developmental delay, intellectual disability, and autism. In: Rimoin D, Pyeritz R, Korf B (eds) Emery and Rimoin’s principles and practice of medical genetics. Academic, Oxford, pp 1–15

    Google Scholar 

  38. Costa e Silva JA (2013, January) Personalized medicine in psychiatry: new technologies and approaches. Metabolism 62(Suppl 1):S40–S44. https://doi.org/10.1016/j.metabol.2012.08.017

    Article  Google Scholar 

  39. Lemay V, Hamet P, Hizel C, Lemarié É, Tremblay Y (2017) Chapter 16 – Personalized medicine: interdisciplinary perspective, world tidal wave, and potential growth for the emerging countries. In: Verma M, Barh D (eds) Progress and challenges in precision medicine. Academic, Amsterdam, pp 301–314

    Chapter  Google Scholar 

  40. Worldometers. https://www.worldometers.info/world-population/. Accessed Aug 2019

  41. Sarkar BK (2017) Big data for secure healthcare system: a conceptual design. Complex Intell Syst 3(2):133–151. https://doi.org/10.1007/s40747-017-0040-1

    Article  Google Scholar 

  42. Park S, Chung K, Jayaraman S (2014) Chapter 1.1 – Wearables: fundamentals, advancements, and a roadmap for the future. In: Sazonov E, Neuman Eds MR (eds) Wearable sensors. Academic, Oxford, pp 1–23

    Google Scholar 

  43. Muoio D. Google and Alphabet’s 20 most ambitious moonshot projects. https://www.businessinsider.com/20-moonshot-projects-by-google-turned-alphabet-2016-2?r=US&IR=T

  44. Long E et al (2017) An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat Biomed Eng, Article, 1: 0024, online 30 Jan 2017. https://doi.org/10.1038/s41551-016-0024., https://www.nature.com/articles/s41551-016-0024#supplementary-information

  45. Crockett D (2016) Going beyond genomics. https://www.healthcatalyst.com/going-beyond-genomics-in-precision-medicine

  46. Hollywood K, Brison DR, Goodacre R (2006, September) Metabolomics: current technologies and future trends. Proteomics 6(17):4716–4723. https://doi.org/10.1002/pmic.200600106

    Article  Google Scholar 

  47. Auffray C, Chen Z, Hood L (2009, January 20) Systems medicine: the future of medical genomics and healthcare. Genome Med 1(2):1–11. https://doi.org/10.1186/gm2

    Article  Google Scholar 

  48. Javitt G (2010) Which way for genetic-test regulation. Nature 466:817–818

    Article  ADS  Google Scholar 

  49. Monteiro MS (2013) Metabolomics analysis for biomarker discovery. Curr Med Chem 20:257–271

    Article  Google Scholar 

  50. Kaufman DJ, Baker R, Milner LC, Devaney S, Hudson KL (2016) A survey of U.S. adults’ opinions about conduct of a nationwide precision medicine initiative(R) cohort study of genes and environment. PLoS One 11(8):e0160461. https://doi.org/10.1371/journal.pone.0160461

    Article  Google Scholar 

  51. NIH (2016) NIH funds biobank to support Precision Medicine Initiative Cohort Program.  https://www.nih.gov/news-events/news-releases/nih-funds-biobank-support-precision-medicine-initiative-cohort-program#:~:text=As%20part%20of%20President%20Obama's,which%20aims%20to%20enroll%201

  52. Beger RD et al (2016) Metabolomics enables precision medicine: “a white paper, community perspective”. Metabolomics 12(10):149–164. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/27642271

    Article  Google Scholar 

  53. Armitage E, Barbas G (2014, January) Metabolomics in cancer biomarker discovery: current trends and future perspectives. J Pharm Biomed Anal 87:1–11. https://doi.org/10.1016/j.jpba.2013.08.041

    Article  Google Scholar 

  54. Dhanasekaran SM (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412(6849):822–826

    Article  ADS  Google Scholar 

  55. Pashayan N, Pharoah P (2012, June) Population-based screening in the era of genomics. Per Med 9(4):451–455. https://doi.org/10.2217/pme.12.40

    Article  Google Scholar 

  56. Mathelin C, Cromer A, Wendling C, Tomasetto C, Rio MC (2006, March) Serum biomarkers for detection of breast cancers: a prospective study. Breast Cancer Res Treat 96(1):83–90. https://doi.org/10.1007/s10549-005-9046-2

    Article  Google Scholar 

  57. Kim K, Taylor SL, Ganti S, Guo L, Osier MV, Weiss RH (2011, May) Urine metabolomic analysis identifies potential biomarkers and pathogenic pathways in kidney cancer. OMICS 15(5):293–303. https://doi.org/10.1089/omi.2010.0094

    Article  Google Scholar 

  58. Bodhani A (2015) The connected body. Eng Technol 10(4):44–47

    Article  Google Scholar 

  59. Moore HM, Compton CC, Lim MD, Vaught J, Christiansen KN, Alper J (2009, September 1) Biospecimen research network symposium: advancing cancer research through biospecimen science. Cancer Res 69(17):6770-2. https://doi.org/10.1158/0008-5472.CAN-09-1795

    Article  Google Scholar 

  60. Lee SMC (2019) Metabolomic and genomic markers of atherosclerosis as related to oxidative stress, inflammation, and vascular function in twin astronauts. https://www.nasa.gov/twins-study/research

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Mok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sherlock, L., Mok, K.H. (2021). Metabolomics and Its Applications to Personalized Medicine. In: Park, J.M., Whang, D.R. (eds) EKC 2019 Conference Proceedings. EKC 2019. Springer, Singapore. https://doi.org/10.1007/978-981-15-8350-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8350-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8349-0

  • Online ISBN: 978-981-15-8350-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics