Skip to main content

Advertisement

Log in

Applications of a new subspace clustering algorithm (COSA) in medical systems biology

  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

A novel clustering approach named Clustering Objects on Subsets of Attributes (COSA) has been proposed (Friedman and Meulman, (2004). Clustering objects on subsets of attributes. J. R. Statist. Soc. B 66, 1–25.) for unsupervised analysis of complex data sets. We demonstrate its usefulness in medical systems biology studies. Examples of metabolomics analyses are described as well as the unsupervised clustering based on the study of disease pathology and intervention effects in rats and humans. In comparison to principal components analysis and hierarchical clustering based on Euclidean distance, COSA shows an enhanced capability to trace partial similarities in groups of objects enabling a new discovery approach in systems biology as well as offering a unique approach to reveal common denominators of complex multi-factorial diseases in animal and human studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bell J.D., Brown J.C.C., Sadler P.J. (1989) NMR studies of body fluids. NMR Biomed. 2:246–256

    Article  PubMed  CAS  Google Scholar 

  • Camacho D., de la Fuente A., Mendes P. (2005) The origin of correlations in metabolomics data. Metabolomics 1:53–63

    Article  CAS  Google Scholar 

  • Davidov E., Clish C.B., Oresic M., Meys M., Stochaj W., Snell P., Lavine G., Londo T.R., Adourian A., Zhang X., Johnston M., Morel N., Marple E.W., Plasterer T.N., Neumann E., Verheij E., Vogels J.T.W.E., Havekes L.M., van der Greef J., Naylor S. (2004) Methods for the differential integrative omic analysis of plasma from a transgenic disease animal model. OMICS J. Integr. Biol. 8:267–288

    Article  CAS  Google Scholar 

  • Everitt, B.S., Landau, S., and Leese, M. (2001). Cluster analysis. Hodder & Stoughton Educational

  • Friedman J.H., Meulman J.J. (2004) Clustering objects on subsets of attributes. J. R. Statist. Soc. B 66:1–25

    Article  Google Scholar 

  • Gates S.C., Sweeley Ch.C. (1978) Quantitative metabolic profiling based on gas chromatography. Clin. Chem. 24:1663–1673

    PubMed  CAS  Google Scholar 

  • Gnanadesikan R., Kettenring J.R., Tsao S.L. (1995) Weighting and selection of variables for cluster analysis. J. Class. 12:113–136

    Article  Google Scholar 

  • Hastie T., Tibshirani R., Friedman J.H. (2001) The elements of statistical learning: Data mining, inference, and prediction. Springer Verlag, New York

    Google Scholar 

  • Horning E.C., Horning M.G. (1971) Human metabolic profiles obtained by GC and GC/MS. J. Chromatogr. Sci. 9:129–140

    CAS  Google Scholar 

  • Ideker T., Galitski T., Hood L. (2001) A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2:343–372

    Article  PubMed  CAS  Google Scholar 

  • Jackson J.E. (1991) User’s guide to principal components. John Wiley & Sons, New York, NY

    Book  Google Scholar 

  • Jain A.K., Murty M.N., Flynn P.J. (1999) Data clustering: a review. ACM Computing Surveys 31:264–323

    Article  Google Scholar 

  • Kohonen, T. (2001). Self organizing maps, Springer Verlag

  • Lee J. A., Lendasse A., Verleysen M. (2004) Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing 57:49–76

    Article  Google Scholar 

  • Mao J., Jain A.K. (1996) A self-organizing network for hyperellipsoidal clustering (HEC). IEEE Trans. Neural Netw. 7:16–29

    Article  Google Scholar 

  • Moller D.E., Kaufman K.D. (2005) Metabolic syndrome: a clinical and molecular perspective. Annu. Rev. Med. 56:45–62

    Article  PubMed  CAS  Google Scholar 

  • Nicholson J.K., Wilson I.D. (1989) High resolution proton magnetic resonance spectroscopy of biological fluids. Progress NMR Spectrosc. 21:449–501

    Article  CAS  Google Scholar 

  • Oresic M., Clish C.B., Davidov E.J., Verheij E., Vogels J.T.W.E., Havekes L.M., Neumann E., Adourian A., Naylor S., Greef J.v.d., Plasterer T. (2004) Phenotype characterization using integrated gene transcript, protein and metabolite profiling. Appl. Bioinformatics 3:205–217

    Article  PubMed  CAS  Google Scholar 

  • Parsons L., Haque E., Liu H. (2004) Subspace clustering for high dimensional data: a review. SIGKDD Explorations 6:90–105

    Article  Google Scholar 

  • Pauling L., Robinson A.B., Teranishi R., Cary P. (1971) Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc. Nat. Acad. Sci. USA 68:2374–2376

    Article  PubMed  CAS  Google Scholar 

  • Phillips, M.S., Liu, Q., Hammond, H.A., Dugan, V., Hey, P.J., Caskey, C.T., Hess, J.F. (1996). Leptin receptor missense mutation in the fatty Zucker rat. 13:18–19

  • Politzer I.A., Dowty B.J., Laseter J.L. (1976) Use of gas chromatography and mass spectrometry to analyze underivatized volatile human and animal constituents of clinical interest. Clin. Chem. 22:1775–1788

    PubMed  CAS  Google Scholar 

  • Rhodes G., Miller M., McCornell M.L., Novotny M. (1981) Metabolic abnormalities associated with diabetes mellitus, as investigated by gas chromatography and pattern recognition analysis of profiles of volatile metabolites. Clin. Chem. 27:580–585

    PubMed  CAS  Google Scholar 

  • Sammon J.W. Jr. (1969) A nonlinear mapping for data structure analysis. IEEE Trans. Comp. C-18:401–409

    Google Scholar 

  • Tas A.C., van der Greef J., de Waart J., Bouwman J., ten Noever de Brauw M.C. (1985) Comparison of direct chemical ionization and direct probe electron impact/chemical ionization pyrolysis for characterization of Pseudomonas and Serratia bacteria. J. Anal. Appl. Pyrolysis 7:249–255

    Article  CAS  Google Scholar 

  • Torgerson W.S. (1952) Multidimensional scaling: I. Theory and method. Psychometrika 17:401–419

    Article  Google Scholar 

  • van der Greef, J., Heijden, Rv. d., and Verheij, E. (2004a). The role of mass spectrometry in systems biology: data processing and identification strategies in metabolomics. In Advances in Mass Spectrometry, Vol. 16 (Eds.), Brenton, G., Monaghan, J. and Ashkroft, A.) Elsevier, pp. 145–164

  • van der Greef J., Stroobant P., Heijden R.v.d. (2004b) The role of analytical sciences in medical systems biology. Curr. Opin. Chem. Biol. 8:559–565

    Article  Google Scholar 

  • Verhoeckx K.C.M., Bijlsma S., Jespersen S., Ramaker R., Verheij E.R., Witkamp R.F., van der Greef J. (2004) Characterization of anti-inflammatory compounds using transcriptomics, proteomics, and metabolomics in combination with multivariate data analysis. Int. Immunopharmacol. 4:1499–1514

    Article  PubMed  CAS  Google Scholar 

  • Ward J.H. (1968) Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58:236–244

    Article  Google Scholar 

  • Windig W., Kistemaker P.G., Haverkamp J. (1980) Factor analysis of the influence of changes in experimental conditions in pyrolysis-mass spectrometry. J. Anal. Appl. Pyrol. 2:18

    Article  Google Scholar 

  • Windig W., Meuzelaar H.L. (1984) Nonsupervised numerical component extraction from pyrolysis mass spectra of complex mixtures. Anal. Chem. 56:2297–303

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Ms. Stacey Horrigan (BG Medicine) for her help during this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matej Orešič or Jan van der Greef.

Additional information

Doris Damian, Matej Orešič, and Elwin Verheij contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damian, D., Orešič, M., Verheij, E. et al. Applications of a new subspace clustering algorithm (COSA) in medical systems biology. Metabolomics 3, 69–77 (2007). https://doi.org/10.1007/s11306-006-0045-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-006-0045-z

Keywords

Navigation