Skip to main content

Advertisement

Log in

Analgesic effect of electroacupuncture on bone cancer pain in rat model: the role of peripheral P2X3 receptor

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Upregulation of P2X3 receptor (P2X3R) has been strongly implicated in nociceptive signaling including bone cancer pain (BCP). The present study, using rat bone cancer model, aimed to explore the role of P2X3R in regulating rat pain behavior under the intervention of electroacupuncture (EA). The BCP model was successfully established by injection with MRMT-1 breast cancer cell into the medullary cavity of left tibia for 3 × 104 cells/3 μL PBS in rats as revealed by obvious bone destruction, decreased paw withdrawal thresholds (PWTs), and reduced paw withdrawal latencies (PWLs). Western blot analyses showed that P2X3R expression was significantly upregulated in ipsilateral lumbar 4–6 (L4-6) dorsal root ganglia (DRG), but the difference not seen in spinal cord dorsal horn (SCDH). With the in-depth study of P2X3R activation, we observed that intrathecal injection of P2X3R agonist α,β-meATP aggravated MRMT-1 induced BCP, while injection of P2X3R inhibitor A-317491 alleviated pain. Subsequently, we demonstrated that BCP induced mechanical allodynia and thermal hyperalgesia were attenuated after EA treatment. Under EA treatment, total P2X3R protein expression in ipsilateral DRGs was decreased, and it is worth mentioning that decreased expression of P2X3R membrane protein, which indicated that both the expression and membrane trafficking of P2X3R were inhibited by EA. The immunofluorescence assay showed that EA stimulation exerted functions by reducing the expression of P2X3R-positive cells in ipsilateral DRGs of BCP rats. Ca2+ imaging analysis revealed that the EA stimulation decreased the percentage of α,β-meATP responsive neurons in DRGs and inhibited calcium influx. Notably, the inhibitory effect of EA on mechanical allodynia and nociceptive flinches was abolished by intrathecal injection of α,β-meATP. These findings demonstrated EA stimulation ameliorated mechanical allodynia and thermal hyperalgesia in rat model of MRMT-1-induced BCP. EA exerts analgesic effect on BCP by reducing the overexpression and functional activity of P2X3R in ipsilateral DRGs of BCP rats. Our work first demonstrates the critical and overall role of P2X3R in EA’s analgesia against peripheral sensitization of MRMT-1-induced BCP and further supports EA as a potential therapeutic option for cancer pain in clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  Google Scholar 

  2. Edwards CM, Johnson RW (2021) From good to bad: the opposing effects of PTHrP on tumor growth, dormancy, and metastasis throughout cancer progression. Front Oncol 11:644303. https://doi.org/10.3389/fonc.2021.644303

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kwakwa KA, Sterling JA (2017) Integrin αvβ3 signaling in tumor-induced bone disease. Cancers 9(7):84. https://doi.org/10.3390/cancers9070084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pan HL, Liu BL, Lin W, Zhang YQ (2016) Modulation of Nav1.8 by lysophosphatidic acid in the induction of bone cancer pain. Neurosci Bull 32(5):445–454. https://doi.org/10.1007/s12264-016-0060-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang H, Yan H, Li X, Liu J, Cao S, Huang B, Huang D, Wu L (2018) inhibition of connexin 43 and phosphorylated NR2B in spinal astrocytes attenuates bone cancer pain in mice. Front Cell Neurosci 12:129. https://doi.org/10.3389/fncel.2018.00129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meng FF, Xu Y, Dan QQ, Wei L, Deng YJ, Liu J, He M, Liu W, Xia QJ, Zhou FH, Wang TH, Wang XY (2015) Intrathecal injection of lentivirus-mediated glial cell line-derived neurotrophic factor RNA interference relieves bone cancer-induced pain in rats. Cancer Sci 106(4):430–437. https://doi.org/10.1111/cas.12609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang E, Lee S, Yi MH, Nan Y, Xu Y, Shin N, Ko Y, Lee YH, Lee W, Kim DW (2017) Expression of granulocyte colony-stimulating factor 3 receptor in the spinal dorsal horn following spinal nerve ligation-induced neuropathic pain. Mol Med Rep 16(2):2009–2015. https://doi.org/10.3892/mmr.2017.6853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dai WL, Bao YN, Fan JF, Ma B, Li SS, Zhao WL, Yu BY, Liu JH (2021) Blockade of spinal dopamine D1/D2 receptor suppresses activation of NMDA receptor through Gαq and Src kinase to attenuate chronic bone cancer pain. J Adv Res 28:139–148. https://doi.org/10.1016/j.jare.2020.08.005

    Article  CAS  PubMed  Google Scholar 

  9. Köles L, Fürst S, Illes P (2007) Purine ionotropic (P2X) receptors. Curr Pharm Des 13(23):2368–2384. https://doi.org/10.2174/138161207781368747

    Article  PubMed  Google Scholar 

  10. Wang S, Xu H, Zou L, Xie J, Wu H, Wu B, Yi Z, Lv Q, Zhang X, Ying M, Liu S, Li G, Gao Y, Xu C, Zhang C, Xue Y, Liang S (2016) LncRNA uc.48+ is involved in diabetic neuropathic pain mediated by the P2X3 receptor in the dorsal root ganglia. Purinergic Signal 12(1):139–148. https://doi.org/10.1007/s11302-015-9488-x

    Article  CAS  PubMed  Google Scholar 

  11. Ma W, Quirion R (2014) Targeting cell surface trafficking of pain-facilitating receptors to treat chronic pain conditions. Expert Opin Ther Targets 18(4):459–472. https://doi.org/10.1517/14728222.2014.887683

    Article  PubMed  Google Scholar 

  12. Robinson LE, Murrell-Lagnado RD (2013) The trafficking and targeting of P2X receptors. Front Cell Neurosci 7:233. https://doi.org/10.3389/fncel.2013.00233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guedon JG, Longo G, Majuta LA, Thomspon ML, Fealk MN, Mantyh PW (2016) Dissociation between the relief of skeletal pain behaviors and skin hypersensitivity in a model of bone cancer pain. Pain 157(6):1239–1247. https://doi.org/10.1097/j.pain.0000000000000514

    Article  PubMed  PubMed Central  Google Scholar 

  14. Crockett SD, Greer KB, Heidelbaugh JJ, Falck-Ytter Y, Hanson BJ, Sultan S (2019) American Gastroenterological Association Institute guideline on the medical management of opioid-induced constipation. Gastroenterology 156(1):218–226. https://doi.org/10.1053/j.gastro.2018.07.016

    Article  PubMed  Google Scholar 

  15. He Y, Guo X, May BH, Zhang AL, Liu Y, Lu C, Mao JJ, Xue CC, Zhang H (2020) Clinical evidence for association of acupuncture and acupressure with improved cancer pain: a systematic review and meta-analysis. JAMA Oncol 6(2):271–278. https://doi.org/10.1001/jamaoncol.2019.5233

    Article  PubMed  Google Scholar 

  16. Paley CA, Bennett MI, Johnson MI (2011) Acupuncture for cancer-induced bone pain? Evid Based Complement Alternat Med 2011:671043. https://doi.org/10.1093/ecam/neq020

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee HJ, Lee JH, Lee EO, Lee HJ, Kim KH, Kim SH, Lee KS, Jung HJ, Kim SH (2009) Substance P and beta-endorphin mediate electro-acupuncture induced analgesia in mouse cancer pain model. J Exper Clin Cancer Res 28(1):102. https://doi.org/10.1186/1756-9966-28-102

    Article  CAS  Google Scholar 

  18. Tian XY, Bian ZX, Hu XG, Zhang XJ, Liu L, Zhang H (2006) Electro-acupuncture attenuates stress-induced defecation in rats with chronic visceral hypersensitivity via serotonergic pathway. Brain Res 1088(1):101–108. https://doi.org/10.1016/j.brainres.2006.03.014

    Article  CAS  PubMed  Google Scholar 

  19. Wang WS, Tu WZ, Cheng RD, He R, Ruan LH, Zhang L, Gong YS, Fan XF, Hu J, Cheng B, Lai YP, Zou EM, Jiang SH (2014) Electroacupuncture and A-317491 depress the transmission of pain on primary afferent mediated by the P2X3 receptor in rats with chronic neuropathic pain states. J Neurosci Res 92(12):1703–1713. https://doi.org/10.1002/jnr.23451

    Article  CAS  PubMed  Google Scholar 

  20. Weng ZJ, Wu LY, Zhou CL, Dou CZ, Shi Y, Liu HR, Wu HG (2015) Effect of electroacupuncture on P2X3 receptor regulation in the peripheral and central nervous systems of rats with visceral pain caused by irritable bowel syndrome. Purinergic Signal 11(3):321–329. https://doi.org/10.1007/s11302-015-9447-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xiang X, Wang S, Shao F, Fang J, Xu Y, Wang W, Sun H, Liu X, Du J, Fang J (2019) Electroacupuncture stimulation alleviates CFA-induced inflammatory pain via suppressing P2X3 expression. Int J Mol Sci 20(13):3248. https://doi.org/10.3390/ijms20133248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liang Y, Gu Y, Shi R, Li G, Chen Y, Huang LM (2019) Electroacupuncture downregulates P2X3 receptor expression in dorsal root ganglia of the spinal nerve-ligated rat. Mol Pain 15:1744806919847810. https://doi.org/10.1177/1744806919847810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liang Y, Du JY, Fang JF, Fang RY, Zhou J, Shao XM, Jiang YL, Chen YT, Fang JQ (2018) Alleviating mechanical allodynia and modulating cellular immunity contribute to electroacupuncture’s dual effect on bone cancer pain. Integr Cancer Ther 17(2):401–410. https://doi.org/10.1177/1534735417728335

    Article  PubMed  Google Scholar 

  24. Wang W, Zhou Y, Cai Y, Wang S, Shao F, Du J, Fang J, Liu J, Shao X, Liu B, Fang J, Liang Y (2021) Phosphoproteomic profiling of rat’s dorsal root ganglia reveals mTOR as a potential target in bone cancer pain and electro-acupuncture’s analgesia. Front Pharmacol 12:593043. https://doi.org/10.3389/fphar.2021.593043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Medhurst SJ, Walker K, Bowes M, Kidd BL, Glatt M, Muller M, Hattenberger M, Vaxelaire J, O’Reilly T, Wotherspoon G, Winter J, Green J, Urban L (2002) A rat model of bone cancer pain. Pain 96(1–2):129–140. https://doi.org/10.1016/s0304-3959(01)00437-7

    Article  CAS  PubMed  Google Scholar 

  26. Du J, Fang J, Chen Y, Wu S, Liang Y, Fang J (2015) Parametric optimization of electroacupuncture against bone-cancer pain in rats and its intervention on mRNA expression of opioid receptor and precursor. Zhongguo Zhen Jiu 35(2):161–168

    PubMed  Google Scholar 

  27. Størkson RV, Kjørsvik A, Tjølsen A, Hole K (1996) Lumbar catheterization of the spinal subarachnoid space in the rat. J Neurosci Meth 65(2):167–172. https://doi.org/10.1016/0165-0270(95)00164-6

    Article  Google Scholar 

  28. Yin C, Liu B, Li Y, Li X, Wang J, Chen R, Tai Y, Shou Q, Wang P, Shao X, Liang Y, Zhou H, Mi W, Fang J, Liu B (2020) IL-33/ST2 induces neutrophil-dependent reactive oxygen species production and mediates gout pain. Theranostics 10(26):12189–12203. https://doi.org/10.7150/thno.48028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burnstock G (1996) A unifying purinergic hypothesis for the initiation of pain. Lancet (London, England) 347(9015):1604–1605. https://doi.org/10.1016/s0140-6736(96)91082-x

    Article  CAS  PubMed  Google Scholar 

  30. Xiao Z, Ou S, He WJ, Zhao YD, Liu XH, Ruan HZ (2010) Role of midbrain periaqueductal gray P2X3 receptors in electroacupuncture-mediated endogenous pain modulatory systems. Brain Res 1330:31–44. https://doi.org/10.1016/j.brainres.2010.03.030

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Q, Zhao Y, Guo Y, Cao DY, Tang XD, Tian YL, Yao FR, Wang HS (2006) Activation and sensitization of C and Adelta afferent fibers mediated by P2X receptors in rat dorsal skin. Brain Res 1102(1):78–85. https://doi.org/10.1016/j.brainres.2006.05.040

    Article  CAS  PubMed  Google Scholar 

  32. Nakatsuka T, Gu JG (2006) P2X purinoceptors and sensory transmission. Pflugers Arch 452(5):598–607. https://doi.org/10.1007/s00424-006-0057-6

    Article  CAS  PubMed  Google Scholar 

  33. Huang LY, Gu Y, Chen Y (2013) Communication between neuronal somata and satellite glial cells in sensory ganglia. Glia 61(10):1571–1581. https://doi.org/10.1002/glia.22541

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhou YL, Jiang GQ, Wei J, Zhang HH, Chen W, Zhu H, Hu S, Jiang X, Xu GY (2015) Enhanced binding capability of nuclear factor-κB with demethylated P2X3 receptor gene contributes to cancer pain in rats. Pain 156(10):1892–1905. https://doi.org/10.1097/j.pain.0000000000000248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu JX, Yuan XM, Wang Q, Wei W, Xu MY (2016) Rho/ROCK acts downstream of lysophosphatidic acid receptor 1 in modulating P2X3 receptor-mediated bone cancer pain in rats. Mol Pain. https://doi.org/10.1177/1744806916644929

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gilchrist LS, Cain DM, Harding-Rose C, Kov AN, Wendelschafer-Crabb G, Kennedy WR, Simone DA (2005) Re-organization of P2X3 receptor localization on epidermal nerve fibers in a murine model of cancer pain. Brain Res 1044(2):197–205. https://doi.org/10.1016/j.brainres.2005.02.081

    Article  CAS  PubMed  Google Scholar 

  37. Kaan TK, Yip PK, Patel S, Davies M, Marchand F, Cockayne DA, Nunn PA, Dickenson AH, Ford AP, Zhong Y, Malcangio M, McMahon SB (2010) Systemic blockade of P2X3 and P2X2/3 receptors attenuates bone cancer pain behaviour in rats. Brain 133(9):2549–2564. https://doi.org/10.1093/brain/awq194

    Article  PubMed  Google Scholar 

  38. Hansen RR, Nasser A, Falk S, Baldvinsson SB, Ohlsson PH, Bahl JM, Jarvis MF, Ding M, Heegaard AM (2012) Chronic administration of the selective P2X3, P2X2/3 receptor antagonist, A-317491, transiently attenuates cancer-induced bone pain in mice. Eur J Pharmacol 688(1–3):27–34. https://doi.org/10.1016/j.ejphar.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  39. Zhang RX, Li A, Liu B, Wang L, Ren K, Qiao JT, Berman BM, Lao L (2007) Electroacupuncture attenuates bone cancer pain and inhibits spinal interleukin-1 beta expression in a rat model. Anesth Analg 105(5):1482–1488. https://doi.org/10.1213/01.ane.0000284705.34629.c5

    Article  CAS  PubMed  Google Scholar 

  40. Xu M, Fei Y, He Q, Fu J, Zhu J, Tao J, Ni C, Xu C, Zhou Q, Yao M, Ni H (2021) Electroacupuncture Attenuates Cancer-Induced Bone Pain via NF-κB/CXCL12 Signaling in Midbrain Periaqueductal Gray. ACS Chem Neurosci 12(18):3323–3334. https://doi.org/10.1021/acschemneuro.1c00224

    Article  CAS  PubMed  Google Scholar 

  41. Cheng RD, Tu WZ, Wang WS, Zou EM, Cao F, Cheng B, Wang JZ, Jiang YX, Jiang SH (2013) Effect of electroacupuncture on the pathomorphology of the sciatic nerve and the sensitization of P2X3 receptors in the dorsal root ganglion in rats with chronic constrictive injury. Chin J Integr Med 19(5):374–379. https://doi.org/10.1007/s11655-013-1447-1

    Article  CAS  PubMed  Google Scholar 

  42. Zhou YF, Ying XM, He XF, Shou SY, Wei JJ, Tai ZX, Shao XM, Liang Y, Fang F, Fang JQ, Jiang YL (2018) Suppressing PKC-dependent membrane P2X3 receptor upregulation in dorsal root ganglia mediated electroacupuncture analgesia in rat painful diabetic neuropathy. Purinergic Signal 14(4):359–369. https://doi.org/10.1007/s11302-018-9617-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin JG, Chen WL (2008) Acupuncture analgesia: a review of its mechanisms of actions. Am J Chin Med 36(4):635–645. https://doi.org/10.1142/s0192415x08006107

    Article  CAS  PubMed  Google Scholar 

  44. Han JS (2004) Acupuncture and endorphins. Neurosci Lett 361(1–3):258–261. https://doi.org/10.1016/j.neulet.2003.12.019

    Article  CAS  PubMed  Google Scholar 

  45. Han JS (2003) Acupuncture: neuropeptide release produced by electrical stimulation of different frequencies. Trends Neurosci 26(1):17–22. https://doi.org/10.1016/s0166-2236(02)00006-1

    Article  CAS  PubMed  Google Scholar 

  46. Sun S, Chen WL, Wang PF, Zhao ZQ, Zhang YQ (2006) Disruption of glial function enhances electroacupuncture analgesia in arthritic rats. Exp Neurol 198(2):294–302. https://doi.org/10.1016/j.expneurol.2005.11.011

    Article  PubMed  Google Scholar 

  47. Zhang RX, Li A, Liu B, Wang L, Xin J, Ren K, Qiao JT, Berman BM, Lao L (2008) Electroacupuncture attenuates bone-cancer-induced hyperalgesia and inhibits spinal preprodynorphin expression in a rat model. Eur J Pain 12(7):870–878. https://doi.org/10.1016/j.ejpain.2007.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tang Y, Yin HY, Liu J, Rubini P, Illes P (2019) P2X receptors and acupuncture analgesia. Brain Res Bull 151:144–152. https://doi.org/10.1016/j.brainresbull.2018.10.015

    Article  CAS  PubMed  Google Scholar 

  49. Wu JX, Xu MY, Miao XR, Lu ZJ, Yuan XM, Li XQ, Yu WF (2012) Functional up-regulation of P2X3 receptors in dorsal root ganglion in a rat model of bone cancer pain. Eur J Pain 16(10):1378–1388. https://doi.org/10.1002/j.1532-2149.2012.00149.x

    Article  CAS  PubMed  Google Scholar 

  50. Chen XQ, Zhu JX, Wang Y, Zhang X, Bao L (2014) CaMKIIα and caveolin-1 cooperate to drive ATP-induced membrane delivery of the P2X3 receptor. J Mol Cell Biol 6(2):140–153. https://doi.org/10.1093/jmcb/mju011

    Article  CAS  PubMed  Google Scholar 

  51. He JJ, Wang X, Liang C, Yao X, Zhang ZS, Yang RH, Fang D (2020) Wnt5b/Ryk-mediated membrane trafficking of P2X3 receptors contributes to bone cancer pain. Exp Neurol 334:113482. https://doi.org/10.1016/j.expneurol.2020.113482

    Article  CAS  PubMed  Google Scholar 

  52. Fei X, He X, Tai Z, Wang H, Qu S, Chen L, Hu Q, Fang J, Jiang Y (2020) Electroacupuncture alleviates diabetic neuropathic pain in rats by suppressing P2X3 receptor expression in dorsal root ganglia. Purinergic Signal 16(4):491–502. https://doi.org/10.1007/s11302-020-09728-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by National Natural Science Foundation of China (82174510 and 81674061), by Zhejiang Provincial Natural Science Funds (LGF21H270006), and by the Key Foundation of the Zhejiang Health Committee (2021ZZ017).

Author information

Authors and Affiliations

Authors

Contributions

Yi Liang designed the experiments. Yang-qian Cai performed the animal experiments. Ming-hui Wu, Si-jia Zeng, Wen Wang, and You Zhou analyzed the data. Shu-xin Tian and Ren-yi Shi wrote the initial manuscripts. Ting Xu participated in figure preparations. All authors contributed to revising the article and approved the final manuscript.

Corresponding author

Correspondence to Yi Liang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The study was approved by the ethics committee of Zhejiang Chinese Medical University, Hangzhou, China (Approval No. IACUC-20181022–01).

Informed consent

We have obtained written informed consent from all study participants.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Sx., Xu, T., Shi, Ry. et al. Analgesic effect of electroacupuncture on bone cancer pain in rat model: the role of peripheral P2X3 receptor. Purinergic Signalling 19, 13–27 (2023). https://doi.org/10.1007/s11302-022-09861-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-022-09861-7

Keywords

Navigation