Skip to main content
Log in

Protective effects of dihydromyricetin on primary hippocampal astrocytes from cytotoxicity induced by comorbid diabetic neuropathic pain and depression

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Activated astrocytes play a key role in diabetic neuropathic pain and depression. We aimed to assess the protective effects of dihydromyricetin (DHM) on primary hippocampal astrocytes cultured with high glucose (HG), substance P (SP), and corticosterone (CORT). Culturing with HG + SP + CORT resulted in damage to primary hippocampal astrocytes, which simulates the clinical damage caused by comorbidity of diabetic neuropathic pain and depression. Western blot, qPCR, and immunofluorescence analyses revealed that HG + SP + CORT increased P2X7 receptor expression in primary hippocampal astrocytes, which was reversed by DHM treatment. Further, HG + SP + CORT elevated TNF-α, IL-1β, free Ca2+, and ERK1/2 phosphorylation levels, which was inhibited by DHM or P2X7 shRNA treatment. Moreover, DHM significantly reduced the P2X7 agonist-activated currents in HEK293 cells transfected with the P2X7 receptor. These findings suggest that DHM can protect primary hippocampal astrocytes cultured with HG + SP + CORT from P2X7 receptor-mediated damage. Culturing cells with HG + SP + CORT might be a viable cell model for cellular injury exploration of diabetic comorbid pain and depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Unnikrishnan R, Pradeepa R, Joshi SR, Mohan V (2017) Type 2 diabetes: demystifying the global epidemic. Diabetes 66(6):1432–1442. https://doi.org/10.2337/db16-0766

    Article  CAS  PubMed  Google Scholar 

  2. Naranjo C, Del Reguero L, Moratalla G, Hercberg M, Valenzuela M, Failde I (2019) Anxiety, depression and sleep disorders in patients with diabetic neuropathic pain: a systematic review. Expert Rev Neurother 19(12):1201–1209. https://doi.org/10.1080/14737175.2019.1653760

    Article  CAS  PubMed  Google Scholar 

  3. Galer BS, Gianas A, Jensen MP (2000) Painful diabetic polyneuropathy: epidemiology, pain description, and quality of life. Diabetes Res Clin Pract 47(2):123–128. https://doi.org/10.1016/s0168-8227(99)00112-6

    Article  CAS  PubMed  Google Scholar 

  4. Ren X, Yu S, Dong W, Yin P, Xu X, Zhou M (2020) Burden of depression in China, 1990–2017: findings from the global burden of disease study 2017. J Affect Disord 268:95–101. https://doi.org/10.1016/j.jad.2020.03.011

    Article  PubMed  Google Scholar 

  5. Moulton CD, Pickup JC, Ismail K (2015) The link between depression and diabetes: the search for shared mechanisms. Lancet Diabetes Endocrinol 3(6):461–471. https://doi.org/10.1016/S2213-8587(15)00134-5

    Article  PubMed  Google Scholar 

  6. Fiore V, Marci M, Poggi A, Giagulli VA, Licchelli B, Iacoviello M, Guastamacchia E, De Pergola G, Triggiani V (2015) The association between diabetes and depression: a very disabling condition. Endocrine. 48(1):14–24. https://doi.org/10.1007/s12020-014-0323-x

    Article  CAS  PubMed  Google Scholar 

  7. Lee GB, Kim HC, Jung SJ (2019) Association between depression and disease-specific treatment. J Affect Disord 260:124–130. https://doi.org/10.1016/j.jad.2019.08.073

    Article  PubMed  Google Scholar 

  8. Jain R, Jain S, Raison CL, Maletic V (2011) Painful diabetic neuropathy is more than pain alone: examining the role of anxiety and depression as mediators and complicators. Curr Diab Rep 11(4):275–284. https://doi.org/10.1007/s11892-011-0202-2

    Article  PubMed  Google Scholar 

  9. Severini C, Improta G, Falconieri-Erspamer G, Salvadori S, Erspamer V (2002) The tachykinin peptide family. Pharmacol Rev 54(2):285–322. https://doi.org/10.1124/pr.54.2.285

    Article  CAS  PubMed  Google Scholar 

  10. Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R (2016) Neuropeptide substance P and the immune response. Cell Mol Life Sci 73(22):4249–4264. https://doi.org/10.1007/s00018-016-2293-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schmidt MJ, Roth J, Ondreka N, Kramer M, Rummel C (2013) A potential role for substance P and interleukin-6 in the cerebrospinal fluid of Cavalier King Charles Spaniels with neuropathic pain. J Vet Intern Med 27(3):530–535. https://doi.org/10.1111/jvim.12080

    Article  CAS  PubMed  Google Scholar 

  12. Zieglgansberger W (2019) Substance P and pain chronicity. Cell Tissue Res 375(1):227–241. https://doi.org/10.1007/s00441-018-2922-y

    Article  CAS  PubMed  Google Scholar 

  13. Won E, Kang J, Choi S, Kim A, Han KM, Yoon HK, Cho SH, Tae WS, Lee MS, Joe SH, Kim YK, Ham BJ (2017) The association between substance P and white matter integrity in medication-naive patients with major depressive disorder. Sci Rep 7(1):9707. https://doi.org/10.1038/s41598-017-10100-y

    Article  PubMed  PubMed Central  Google Scholar 

  14. Holsboer F (2001) Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disord 62(1–2):77–91. https://doi.org/10.1016/S0165-0327(00)00352-9

    Article  CAS  PubMed  Google Scholar 

  15. Feng S, Liu J, Cheng B, Deng A, Zhang H (2018) (−)-Epigallocatechin-3-gallate protects PC12 cells against corticosterone-induced neurotoxicity via the hedgehog signaling pathway. Exp Ther Med 15(5):4284–4290. https://doi.org/10.3892/etm.2018.5936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shi X, Zhou N, Cheng J, Shi X, Huang H, Zhou M, Zhu H (2019) Chlorogenic acid protects PC12 cells against corticosterone-induced neurotoxicity related to inhibition of autophagy and apoptosis. BMC Pharmacol Toxicol 20(1):56. https://doi.org/10.1186/s40360-019-0336-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sterner EY, Kalynchuk LE (2010) Behavioral and neurobiological consequences of prolonged glucocorticoid exposure in rats: relevance to depression. Prog Neuropsychopharmacol Biol Psychiatry 34(5):777–790. https://doi.org/10.1016/j.pnpbp.2010.03.005

    Article  CAS  PubMed  Google Scholar 

  18. Rajkowska G, Stockmeier CA (2013) Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets 14(11):1225–1236. https://doi.org/10.2174/13894501113149990156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao Y, Pu D, Sun Y, Chen J, Luo C, Wang M, Zhou J, Lv A, Zhu S, Liao Z, Zhao K, Xiao Q (2018) High glucose-induced defective thrombospondin-1 release from astrocytes via TLR9 activation contributes to the synaptic protein loss. Exp Cell Res 363(2):171–178. https://doi.org/10.1016/j.yexcr.2017.12.030

    Article  CAS  PubMed  Google Scholar 

  20. Inoue K, Tsuda M, Tozaki-Saitoh H (2012) Role of the glia in neuropathic pain caused by peripheral nerve injury. Brain Nerve 64(11):1233–1239. https://doi.org/10.11477/mf.1416101336

    Article  CAS  PubMed  Google Scholar 

  21. Liao YH, Zhang GH, Jia D, Wang P, Qian NS, He F, Zeng XT, He Y, Yang YL, Cao DY, Zhang Y, Wang DS, Tao KS, Gao CJ, Dou KF (2011) Spinal astrocytic activation contributes to mechanical allodynia in a mouse model of type 2 diabetes. Brain Res 1368:324–335. https://doi.org/10.1016/j.brainres.2010.10.044

    Article  CAS  PubMed  Google Scholar 

  22. Czeh B, Di Benedetto B (2013) Antidepressants act directly on astrocytes: evidences and functional consequences. Eur Neuropsychopharmacol 23(3):171–185. https://doi.org/10.1016/j.euroneuro.2012.04.017

    Article  CAS  PubMed  Google Scholar 

  23. Zhao YA, Lin ZX, Chen L, Ouyang LF, Gu L, Chen FY, Zhang Q (2018) Hippocampal astrocyte atrophy in a mouse depression model induced by corticosterone is reversed by fluoxetine instead of benzodiazepine diazepam. Prog Neuro-Psychopharmacol Biol Psychiatry 83:99–109. https://doi.org/10.1016/j.pnpbp.2018.01.011

    Article  CAS  Google Scholar 

  24. Wang Q, Verweij EWE, Krugers HJ, Joels M, Swaab DF, Lucassen PJ (2018) Distribution of the glucocorticoid receptor in the human amygdala; changes in mood disorder patients. Brain Struct Funct 19(5):1615–1626. https://doi.org/10.1007/s00429-013-0589-4

    Article  CAS  Google Scholar 

  25. Miras-Portugal MT, Sebastian-Serrano A, Garcia LD, Diaz-Hernandez M (2017) Neuronal P2X7 receptor: involvement in neuronal physiology and pathology. J Neurosci 37(30):7063–7072. https://doi.org/10.1523/Jneurosci.3104-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chrovian CC, Rech JC, Bhattacharya A, Letavic MA (2014) P2X7 antagonists as potential therapeutic agents for the treatment of CNS disorders. Prog Med Chem 53:65–100. https://doi.org/10.1016/B978-0-444-63380-4.00002-0

    Article  CAS  PubMed  Google Scholar 

  27. Shen YL, Guan S, Ge HX, Xiong W, He LK, Liu LJ, Yin CC, Liu H, Li GL, Xu CS, Xu H, Liu SM, Li GD, Liang SD, Gao Y (2018) Effects of palmatine on rats with comorbidity of diabetic neuropathic pain and depression. Brain Res Bull 139:56–66. https://doi.org/10.1016/j.brainresbull.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  28. Zhang K, Liu JY, You XT, Kong P, Song YC, Cao L, Yang S, Wang WB, Fu Q, Ma ZQ (2016) P2X7 as a new target for chrysophanol to treat lipopolysaccharide-induced depression in mice. Neurosci Lett 613:60–65. https://doi.org/10.1016/j.neulet.2015.12.043

    Article  CAS  PubMed  Google Scholar 

  29. Jia L, Zhao W, Sang J, Wang W, Wei W, Wang Y, Zhao F, Lu F, Liu F (2019) Inhibitory effect of a flavonoid dihydromyricetin against Aβ40 amyloidogenesis and its associated cytotoxicity. ACS Chem Neurosci 10(11):4696–4703. https://doi.org/10.1021/acschemneuro.9b00480

    Article  CAS  PubMed  Google Scholar 

  30. Lin Y, Fan J, Ruan L, Bi J, Yan Y, Wang T, Gao H, Yao X, Cheng K, Zhang W (2019) Semi-preparative separation of dihydromyricetin enantiomers by supercritical fluid chromatography and determination of anti-inflammatory activities. J Chromatogr A1606:460386. https://doi.org/10.1016/j.chroma.2019.460386

    Article  CAS  Google Scholar 

  31. Xie K, He X, Chen KY, Chen JH, Sakao K, Hou DX (2019) Antioxidant properties of a traditional vine tea, Ampelopsis grossedentata. Antioxidants (Basel) 8(8):295. https://doi.org/10.3390/antiox8080295

    Article  CAS  Google Scholar 

  32. Feng QW, Cui ZG, Jin YJ, Sun L, Li ML, Zakki SA, Zhou DJ, Inadera H (2019) Protective effect of dihydromyricetin on hyperthermia-induced apoptosis in human myelomonocytic lymphoma cells. Apoptosis 24(3–4):290–300. https://doi.org/10.1007/s10495-019-01518-y

    Article  CAS  PubMed  Google Scholar 

  33. Zhang J, Chen Y, Luo H, Sun L, Xu M, Yu J, Zhou Q, Meng G, Yang S (2018) Recent update on the pharmacological effects and mechanisms of dihydromyricetin. Front Pharmacol 9:1204. https://doi.org/10.3389/fphar.2018.01204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Salzer I, Gantumur E, Yousuf A, Boehm S (2016) Control of sensory neuron excitability by serotonin involves 5HT2C receptors and Ca(2+)-activated chloride channels. Neuropharmacology 110(Pt A):277–286. https://doi.org/10.1016/j.neuropharm.2016.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao S, Zhou Y, Fan Y, Gong Y, Yang J, Yang R, Li L, Zou L, Xu X, Li G, Liu S, Zhang C, Li G, Liang S (2019) Involvement of P2X4 receptor in gp120-induced pyroptosis in dorsal root ganglia. J Neurochem 151(5):584–594. https://doi.org/10.1111/jnc.14850

    Article  CAS  PubMed  Google Scholar 

  36. Gubba EM, Fawcett JW, Herbert J (2004) The effects of corticosterone and dehydroepiandrosterone on neurotrophic factor mRNA expression in primary hippocampal and astrocyte cultures. Mol Brain Res 127(1–2):48–59. https://doi.org/10.1016/j.molbrainres.2004.05.004

    Article  CAS  PubMed  Google Scholar 

  37. Lim D, Mapelli L, Canonico PL, Moccia F, Genazzani AA (2018) Neuronal activity-dependent activation of astroglial calcineurin in mouse primary hippocampal cultures. Int J Mol Sci 19(10):2997. https://doi.org/10.3390/ijms19102997

    Article  CAS  PubMed Central  Google Scholar 

  38. Chen Q, Wu H, Tao J, Liu C, Deng Z, Liu Y, Chen G, Liu B, Xu C (2017) Effect of naringin on gp120-induced injury mediated by P2X7 receptors in rat primary cultured microglia. PLoS One 12(8):e0183688. https://doi.org/10.1371/journal.pone.0183688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang C, Deng Y, Dai H, Zhou W, Tian J, Bing G, Zhao L (2017) Effects of dimethyl sulfoxide on the morphology and viability of primary cultured neurons and astrocytes. Brain Res Bull 128:34–39. https://doi.org/10.1016/j.brainresbull.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  40. Yi Y, Shen Y, Wu Q, Rao J, Guan S, Rao S, Huang L, Tan M, He L, Liu L, Li G, Liang S, Xiong W, Gao Y (2018) Protective effects of oxymatrine on vascular endothelial cells from high-glucose-induced cytotoxicity by inhibiting the expression of A2B receptor. Cell Physiol Biochem 45(2):558–571. https://doi.org/10.1159/000487033

    Article  CAS  PubMed  Google Scholar 

  41. Liu S, Zou L, Xie J, Xie W, Wen S, Xie Q, Gao Y, Li G, Zhang C, Xu C, Xu H, Wu B, Lv Q, Zhang X, Wang S, Xue Y, Liang S (2016) LncRNA NONRATT021972 siRNA regulates neuropathic pain behaviors in type 2 diabetic rats through the P2X7 receptor in dorsal root ganglia. Mol Brain 9:44. https://doi.org/10.1186/s13041-016-0226-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang R, Li L, Yuan H, Liu H, Gong Y, Zou L, Li S, Wang Z, Shi L, Jia T, Zhao S, Wu B, Yi Z, Gao Y, Li G, Xu H, Liu S, Zhang C, Li G, Liang S (2019) Quercetin relieved diabetic neuropathic pain by inhibiting upregulated P2X4 receptor in dorsal root ganglia. J Cell Physiol 234(3):2756–2764. https://doi.org/10.1002/jcp.27091

    Article  CAS  PubMed  Google Scholar 

  43. Wu M, Xu L, Teng C, Xiao X, Hu W, Chen J, Tu W (2019) Involvement of oxidative stress in di-2-ethylhexyl phthalate (DEHP)-induced apoptosis of mouse NE-4C neural stem cells. Neurotoxicology 70:41–47. https://doi.org/10.1016/j.neuro.2018.10.013

    Article  CAS  PubMed  Google Scholar 

  44. Guo C, Wang J, Jing L, Ma R, Liu X, Gao L, Cao L, Duan J, Zhou X, Li Y, Sun Z (2018) Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles. Environ Pollut 236:926–936. https://doi.org/10.1016/j.envpol.2017.10.060

    Article  CAS  PubMed  Google Scholar 

  45. Tang Y, Li GD (2004) Chronic exposure to high glucose impairs bradykinin-stimulated nitric oxide production by interfering with the phospholipase-C-implicated signalling pathway in endothelial cells: evidence for the involvement of protein kinase C. Diabetologia 47(12):2093–2104. https://doi.org/10.1007/s00125-004-1589-y

    Article  CAS  PubMed  Google Scholar 

  46. Bahniwal M, Little JP, Klegeris A (2017) High glucose enhances neurotoxicity and inflammatory cytokine secretion by stimulated human astrocytes. Curr Alzheimer Res 14(7):731–741. https://doi.org/10.2174/1567205014666170117104053

    Article  CAS  PubMed  Google Scholar 

  47. D'Amato C, Morganti R, Greco C, Di Gennaro F, Cacciotti L, Longo S, Mataluni G, Lauro D, Marfia GA, Spallone V (2016) Diabetic peripheral neuropathic pain is a stronger predictor of depression than other diabetic complications and comorbidities. Diab Vasc Dis Res 13(6):418–428. https://doi.org/10.1177/1479164116653240

    Article  PubMed  Google Scholar 

  48. Duan-Porter W, Goldstein KM, McDuffie JR, Hughes JM, Clowse ME, Klap RS, Masilamani V, Allen LaPointe NM, Nagi A, Gierisch JM, Williams JW Jr (2016) Reporting of sex effects by systematic reviews on interventions for depression, diabetes, and chronic pain. Ann Intern Med 165(3):184–193. https://doi.org/10.7326/M15-2877

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cherif F, Zouari HG, Cherif W, Hadded M, Cheour M, Damak R (2020) Depression prevalence in neuropathic pain and its impact on the quality of life. Pain Res Manag 2020:7408508–7408508. https://doi.org/10.1155/2020/7408508

    Article  PubMed  PubMed Central  Google Scholar 

  50. Norenberg W, Schunk J, Fischer W, Sobottka H, Riedel T, Oliveira JF, Franke H, Illes P (2010) Electrophysiological classification of P2X7 receptors in rat cultured neocortical astroglia. Brit J Pharmacol 160(8):1941–1952. https://doi.org/10.1111/j.1476-5381.2010.00736.x

    Article  CAS  Google Scholar 

  51. Ballerini P, Ciccarelli R, Caciagli F, Rathbone MP, Werstiuk ES, Traversa U, Buccella S, Giuliani P, Jang S, Nargi E, Visini D, Santavenere C, Di Iorio P (2005) P2X7 receptor activation in rat brain cultured astrocytes increases the biosynthetic release of cysteinyl leukotrienes. Int J Immunopathol Pharmacol 18(3):417–430. https://doi.org/10.1177/039463200501800303

    Article  CAS  PubMed  Google Scholar 

  52. Xiong Y, Sun S, Teng S, Jin M, Zhou Z (2018) Ca(2+)-dependent and Ca(2+)-independent ATP release in astrocytes. Front Mol Neurosci 11:224. https://doi.org/10.3389/fnmol.2018.00224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gelin CF, Bhattacharya A, Letavic MA (2020) P2X7 receptor antagonists for the treatment of systemic inflammatory disorders. Prog Med Chem59:63–99. doi:https://doi.org/10.1016/bs.pmch.2019.11.002

  54. Zhang W, Zhu Z, Liu Z (2020) The role and pharmacological properties of the P2X7 receptor in neuropathic pain.Brain Res Bull155:19–28. doi:https://doi.org/10.1016/j.brainresbull.2019.11.006

  55. Li H, Li Q, Liu Z, Yang K, Chen Z, Cheng Q, Wu L (2017) The versatile effects of dihydromyricetin in health. Evid Based Complement Alternat Med 2017:1053617–1053610. https://doi.org/10.1155/2017/1053617

    Article  PubMed  PubMed Central  Google Scholar 

  56. Murakami T, Miyakoshi M, Araho D, Mizutani K, Kambara T, Ikeda T, Chou WH, Inukai M, Takenaka A, Igarashi K (2004) Hepatoprotective activity of tocha, the stems and leaves of Ampelopsis grossedentata, and ampelopsin. Biofactors 21(1–4):175–178. https://doi.org/10.1002/biof.552210136

    Article  CAS  PubMed  Google Scholar 

  57. Sheng W, Zong Y, Mohammad A, Ajit D, Cui J, Han D, Hamilton JL, Simonyi A, Sun AY, Gu Z, Hong JS, Weisman GA, Sun GY (2011) Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA(2)-IIA expression in astrocytes and microglia. J Neuroinflammation 8:121. https://doi.org/10.1186/1742-2094-8-121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim SK, Nabekura J, Koizumi S (2017) Astrocyte-mediated synapse remodeling in the pathological brain. Glia 65(11):1719–1727. https://doi.org/10.1002/glia.23169

    Article  PubMed  Google Scholar 

  59. Wu B, Peng L, Xie J, Zou L, Zhu Q, Jiang H, Yi Z, Wang S, Xue Y, Gao Y, Li G, Liu S, Zhang C, Li G, Liang S, Xiong H (2017) The P2X7 receptor in dorsal root ganglia is involved in HIV gp120-associated neuropathic pain. Brain Res Bull 135:25–32. https://doi.org/10.1016/j.brainresbull.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  60. Donnelly-Roberts DL, Jarvis MF (2007) Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states. Br J Pharmacol 151(5):571–579. https://doi.org/10.1038/sj.bjp.0707265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Prof. Shangdong Liang and Prof. Guodong Li for assisting us in the experimental design.

Funding

This study was supported by grants from the National Natural Science Foundation of China (No. 81760152).

Author information

Authors and Affiliations

Authors

Contributions

Y.G. designed the study; H.G. and M.S. carried out the experiments; X. W., M. Z., H.T., Y. H., R.C., and M.Y. assisted H.G to carry out the findings; H.G. drafted the manuscript and all authors reviewed the manuscript and approved the final version for publication.

Corresponding author

Correspondence to Yun Gao.

Ethics declarations

Competing interests

The authors declare that they have no financial or other conflicts of interest in association with this work.

Ethical approval

This study was approved by the Animal Care and Ethics Committee of Nanchang University. We performed the experiments in accordance with the guidelines of the National Institutes of Health on Laboratory Animal Care and Use (NIH Publication No. 8023, Rev. 1978).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Huixiang Ge, Mengyun Sun, and Xingyu Wei Joint first authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, H., Sun, M., Wei, X. et al. Protective effects of dihydromyricetin on primary hippocampal astrocytes from cytotoxicity induced by comorbid diabetic neuropathic pain and depression. Purinergic Signalling 16, 585–599 (2020). https://doi.org/10.1007/s11302-020-09752-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-020-09752-9

Keywords

Navigation