Skip to main content

Advertisement

Log in

Adenosine reduces reactive oxygen species and interleukin-8 production by Trichomonas vaginalis-stimulated neutrophils

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Trichomonas vaginalis is a flagellated protozoan that affects the human urogenital tract causing 276.4 million new infections a year. The parasite elicits a vaginal mucosal infiltration of immune cells, especially neutrophils which are considered to be primarily responsible for cytological change observed at the infection site as well as the major contributor in the inflammatory response against the parasite. Extracellular nucleotides and their nucleosides are signaling compounds involved in several biological processes, including inflammation and immune responses. Once in the extracellular space, the nucleotides and nucleosides can directly activate the purinergic receptors. Herein, we investigated the involvement of purinergic signaling on the production of reactive oxygen species (ROS) and cytokines by T. vaginalis-stimulated neutrophils. Parasites were able to induce an increase in ROS and IL-8 levels while they did not promote IL-6 secretion or neutrophil elastase activity. Adenine and guanine nucleotides or nucleosides were not able to modulate ROS and cytokine production; however, when T. vaginalis-stimulated neutrophils were incubated with adenosine and adenosine deaminase inhibitor, the levels of ROS and IL-8 were significantly reduced. These immunosuppressive effects were probably a response to the higher bioavailability of adenosine found in the supernatant as result of inhibition of enzyme activity. The involvement of P1 receptors was investigated by immunofluorescence and A1 receptor was the most abundant. Our data show that the influence of purinergic signaling, specifically those effects associated with adenosine accumulation, on the modulation of production of proinflammatory mediators by T. vaginalis-stimulated neutrophils contribute to the understanding of immunological aspects of trichomoniasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. WHO (2012) Global incidence and prevalence of selected curable sexually transmitted infections: 2008. World Health Organization, Department of Reproductive Health and Research. World Health Organization, Geneva

    Google Scholar 

  2. Poole DN, McClelland RS (2013) Global epidemiology of Trichomonas vaginalis. Sex Transm Infect 89:418–422. https://doi.org/10.1136/sextrans-2013-051075

    Article  PubMed  Google Scholar 

  3. Allsworth JE, Ratner JA, Peipert JF (2009) Trichomoniasis and other sexually transmitted infections: results from the 2001-2004 National Health and Nutrition Examination Surveys. Sex Transm Dis 36:738–744. https://doi.org/10.1097/OLQ.0b013e3181b38a4b

    Article  PubMed  PubMed Central  Google Scholar 

  4. Klebanoff MA, Carey JC, Hauth JC, Hillier SL, Nugent RP, Thom EA, Ernest JM, Heine RP, Wapner RJ, Trout W, Moawad A, Leveno KJ, Miodovnik M, Sibai BM, Van Dorsten JP, Dombrowski MP, O’Sullivan MJ, Varner M, Langer O, McNellis D, Roberts JM (2001) Failure of metronidazole to prevent preterm delivery among pregnant women with asymptomatic Trichomonas vaginalis infection. N Engl J Med 345:487–493. https://doi.org/10.1056/NEJMoa003329

    Article  CAS  PubMed  Google Scholar 

  5. Grodstein F, Goldman MB, Cramer DW (1993) Relation of tubal infertility to history of sexually transmitted diseases. Am J Epidemiol 137:577–584

    Article  CAS  PubMed  Google Scholar 

  6. Viikki M, Pukkala E, Nieminen P, Hakama M (2000) Gynaecological infections as risk determinants of subsequent cervical neoplasia. Acta Oncol 39:71–75

    Article  CAS  PubMed  Google Scholar 

  7. Sutcliffe S, Neace C, Magnuson NS, Reeves R, Alderete JF (2012) Trichomonosis, a common curable STI, and prostate carcinogenesis—a proposed molecular mechanism. PLoS Pathog 8:e1002801. https://doi.org/10.1371/journal.ppat.1002801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lazenby GB, Soper DE, Nolte FS (2013) Correlation of leukorrhea and Trichomonas vaginalis infection. J Clin Microbiol 51:2323–2327. https://doi.org/10.1128/jcm.00416-13

    Article  PubMed  PubMed Central  Google Scholar 

  9. Escario A, Gomez Barrio A, Simons Diez B, Escario JA (2010) Immunohistochemical study of the vaginal inflammatory response in experimental trichomoniasis. Acta Trop 114:22–30. https://doi.org/10.1016/j.actatropica.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  10. Song HO, Ryu JS (2013) Superoxide anion production by human neutrophils activated by Trichomonas vaginalis. Korean J Parasitol 51:479–484. https://doi.org/10.3347/kjp.2013.51.4.479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Frasson A, Carli G, Bonan C, Tasca T (2012) Involvement of purinergic signaling on nitric oxide production by neutrophils stimulated with Trichomonas vaginalis. Purinergic Signal 8:1–9. https://doi.org/10.1007/s11302-011-9254-7

    Article  CAS  PubMed  Google Scholar 

  12. Ryu JS, Kang JH, Jung SY, Shin MH, Kim JM, Park H, Min DY (2004) Production of interleukin-8 by human neutrophils stimulated with Trichomonas vaginalis. Infect Immun 72:1326–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shaio MF, Lin PR, Liu JY, Yang KD (1995) Generation of interleukin-8 from human monocytes in response to Trichomonas vaginalis stimulation. Infect Immun 63:3864–3870

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nam YH, Min D, Kim HP, Song KJ, Kim KA, Lee YA, Kim SH, Shin MH (2011) Leukotriene B4 receptor BLT-mediated phosphorylation of NF-kappaB and CREB is involved in IL-8 production in human mast cells induced by Trichomonas vaginalis-derived secretory products. Microbes Infect 13:1211–1220. https://doi.org/10.1016/j.micinf.2011.07.006

    Article  CAS  PubMed  Google Scholar 

  15. Nam YH, Min A, Kim SH, Lee YA, Kim KA, Song KJ, Shin MH (2012) Leukotriene B(4) receptors BLT1 and BLT2 are involved in interleukin-8 production in human neutrophils induced by Trichomonas vaginalis-derived secretory products. Inflamm Res 61:97–102. https://doi.org/10.1007/s00011-011-0425-3

    Article  CAS  PubMed  Google Scholar 

  16. Idzko M, Ferrari D, Riegel AK, Eltzschig HK (2014) Extracellular nucleotide and nucleoside signaling in vascular and blood disease. Blood 124:1029–1037. https://doi.org/10.1182/blood-2013-09-402560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404. https://doi.org/10.1016/j.pharmthera.2005.04.013

    Article  CAS  PubMed  Google Scholar 

  18. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    CAS  PubMed  Google Scholar 

  19. Zimmermann H (2001) Ectonucleotidases: some recent developments and a note on nomenclature. Drug Develop Res 52:44–56. https://doi.org/10.1002/ddr.1097

    Article  CAS  Google Scholar 

  20. Franco R, Casado V, Ciruela F, Saura C, Mallol J, Canela EI, Lluis C (1997) Cell surface adenosine deaminase: much more than an ectoenzyme. Prog Neurobiol 52:283–294

    Article  CAS  PubMed  Google Scholar 

  21. Diamond LS (1957) The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43:488–490

    Article  CAS  PubMed  Google Scholar 

  22. Boyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl 97:77–89

    CAS  PubMed  Google Scholar 

  23. Seo MY, Im SJ, Gu NY, Kim JH, Chung YH, Ahn MH, Ryu JS (2014) Inflammatory response of prostate epithelial cells to stimulation by Trichomonas vaginalis. Prostate 74:441–449. https://doi.org/10.1002/pros.22766

    Article  CAS  PubMed  Google Scholar 

  24. Tamura DY, Moore EE, Partrick DA, Johnson JL, Zallen G, Silliman CC (1998) Primed neutrophils require phosphatidic acid for maximal receptor-activated elastase release. J Surg Res 77:71–74. https://doi.org/10.1006/jsre.1998.5342

    Article  CAS  PubMed  Google Scholar 

  25. Giusti G (1974) Adenosine deaminase. In: Bdrgmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 1092–1099

    Chapter  Google Scholar 

  26. Marin RM, Franchini KG, Rocco SA (2007) Analysis of adenosine by RP-HPLC method and its application to the study of adenosine kinase kinetics. J Sep Sci 30:2473–2479. https://doi.org/10.1002/jssc.200700194

    Article  CAS  PubMed  Google Scholar 

  27. Diaz JF, Strobe R, Engelborghs Y, Souto AA, Andreu JM (2000) Molecular recognition of taxol by microtubules. Kinetics and thermodynamics of binding of fluorescent taxol derivatives to an exposed site. J Biol Chem 275:26265–26276. https://doi.org/10.1074/jbc.M003120200

    Article  CAS  PubMed  Google Scholar 

  28. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20:1126–1167. https://doi.org/10.1089/ars.2012.5149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paiva CN, Bozza MT (2014) Are reactive oxygen species always detrimental to pathogens? Antioxid Redox Signal 20:1000–1037. https://doi.org/10.1089/ars.2013.5447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Song HO, Shin MH, Ahn MH, Min DY, Kim YS, Ryu JS (2008) Trichomonas vaginalis: reactive oxygen species mediates caspase-3 dependent apoptosis of human neutrophils. Exp Parasitol 118:59–65. https://doi.org/10.1016/j.exppara.2007.06.010

    Article  CAS  PubMed  Google Scholar 

  31. Baggiolini M, Dewald B, Moser B (1994) Interleukin-8 and related chemotactic cytokines—CXC and CC chemokines. Adv Immunol 55:97–179

    Article  CAS  PubMed  Google Scholar 

  32. Fichorova RN, Trifonova RT, Gilbert RO, Costello CE, Hayes GR, Lucas JJ, Singh BN (2006) Trichomonas vaginalis lipophosphoglycan triggers a selective upregulation of cytokines by human female reproductive tract epithelial cells. Infect Immun 74:5773–5779. https://doi.org/10.1128/iai.00631-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fichorova RN (2009) Impact of T. vaginalis infection on innate immune responses and reproductive outcome. J Reprod Immunol 83:185–189. https://doi.org/10.1016/j.jri.2009.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lotti F, Maggi M (2013) Interleukin 8 and the male genital tract. J Reprod Immunol 100:54–65. https://doi.org/10.1016/j.jri.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  35. Kukulski F, Bahrami F, Ben Yebdri F, Lecka J, Martin-Satue M, Levesque SA, Sevigny J (2011) NTPDase1 controls IL-8 production by human neutrophils. J Immunol 187:644–653. https://doi.org/10.4049/jimmunol.1002680

    Article  CAS  PubMed  Google Scholar 

  36. Matos JAA, Borges FP, Tasca T, McR B, De Carli GA, da Graça Fauth M, Dias RD, Bonan CD (2001) Characterisation of an ATP diphosphohydrolase (Apyrase, EC 3.6.1.5) activity in Trichomonas vaginalis. Int J Parasitol 31:770–775. https://doi.org/10.1016/S0020-7519(01)00191-6

    Article  Google Scholar 

  37. Menezes CB, Durgante J, de Oliveira RR, Dos Santos VH, Rodrigues LF, Garcia SC, Dos Santos O, Tasca T (2016) Trichomonas vaginalis NTPDase and ecto-5′-nucleotidase hydrolyze guanine nucleotides and increase extracellular guanosine levels under serum restriction. Mol Biochem Parasitol 207:10–18. https://doi.org/10.1016/j.molbiopara.2016.04.003

    Article  CAS  PubMed  Google Scholar 

  38. Zimmermann M, Aguilera FB, Castellucci M, Rossato M, Costa S, Lunardi C, Ostuni R, Girolomoni G, Natoli G, Bazzoni F, Tamassia N, Cassatella MA (2015) Chromatin remodelling and autocrine TNFalpha are required for optimal interleukin-6 expression in activated human neutrophils. Nat Commun 6:6061. https://doi.org/10.1038/ncomms7061

    Article  CAS  PubMed  Google Scholar 

  39. Tanaka T, Narazaki M, Ogata A, Kishimoto T (2014) A new era for the treatment of inflammatory autoimmune diseases by interleukin-6 blockade strategy. Semin Immunol 26:88–96. https://doi.org/10.1016/j.smim.2014.01.009

    Article  CAS  PubMed  Google Scholar 

  40. Han IH, Goo SY, Park SJ, Hwang SJ, Kim YS, Yang MS, Ahn MH, Ryu JS (2009) Proinflammatory cytokine and nitric oxide production by human macrophages stimulated with Trichomonas vaginalis. Korean J Parasitol 47:205–212. https://doi.org/10.3347/kjp.2009.47.3.205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pham CT (2006) Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 6:541–550. https://doi.org/10.1038/nri1841

    Article  CAS  PubMed  Google Scholar 

  42. Barletta KE, Ley K, Mehrad B (2012) Regulation of neutrophil function by adenosine. Arterioscler Thromb Vasc Biol 32:856–864. https://doi.org/10.1161/atvbaha.111.226845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hasko G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770. https://doi.org/10.1038/nrd2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aeffner F, Woods PS, Davis IC (2014) Activation of A1-adenosine receptors promotes leukocyte recruitment to the lung and attenuates acute lung injury in mice infected with influenza A/WSN/33 (H1N1) virus. J Virol 88:10214–10227. https://doi.org/10.1128/jvi.01068-14

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhou Y, Schneider DJ, Blackburn MR (2009) Adenosine signaling and the regulation of chronic lung disease. Pharmacol Ther 123:105–116. https://doi.org/10.1016/j.pharmthera.2009.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors thank Centro de Microscopia e Microanálise, CMM/UFRGS, for technical assistance in the confocal microscopy.

Funding

This work was supported by the NANOBIOTEC-Brazil program from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil (grant 23038.019022/2009-68) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil (grant 474930/2012-2). A.P.F. and C.B.M are recipients of Ph.D. fellowships from CAPES/Brazil. T.T. thanked CNPq/Brazil for research fellowship (grant 307447/2014-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiana Tasca.

Ethics declarations

Conflicts of interest

Amanda Piccoli Frasson declares that she has no conflict of interest.

Camila Braz Menezes declares that she has no conflict of interest.

Gustavo Krumel Goelzer declares that he has no conflict of interest.

Simone Cristina Baggio Gnoatto declares that she has no conflict of interest.

Solange Cristina Garcia declares that she has no conflict of interest.

Tiana Tasca declares that she has no conflict of interest.

Ethical approval

Human neutrophils were collected from venous blood of healthy volunteers with ethical approved by UFRGS Ethical Committee, number 19346.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frasson, A.P., Menezes, C.B., Goelzer, G.K. et al. Adenosine reduces reactive oxygen species and interleukin-8 production by Trichomonas vaginalis-stimulated neutrophils. Purinergic Signalling 13, 569–577 (2017). https://doi.org/10.1007/s11302-017-9584-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-017-9584-1

Keywords

Navigation