Skip to main content
Log in

Construction and characterization of a bacterial artificial chromosome library for Camellia sinensis

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Tea is a popular and natural non-alcoholic beverage, and is produced from fresh leaves of Camellia sinensis. Tea leaves contain many bioactive compounds that have significant health benefits. We constructed a high quality bacterial artificial chromosome (BAC) library by using the fresh petals of C. sinensis “Shuchazao” for genome sequencing and improvement of genomic assembly. BAC library is still a significant tool for studies of functional genomes and preservation of precious genetic resources. The BAC library contains 161,280 clones with an average insert size of 113 kb, which represents approximately 6.2-fold coverage of haploid genome equivalents of C. sinensis. We characterized 20 complete BAC clones and 738 BAC end sequences (BESs) ranging from 105 to 917 bp. In addition, we predicted cis-regulatory elements of LAR (leucoanthocyanidin reductase), TCS (caffeine synthase), and TS (theanine synthetase) involved in tea characteristic metabolite synthesis and identified a larger number of light-responsive cis-acting elements in these three genes. Meanwhile, we analyzed alternative splicing of these three genes. Furthermore, 12 pairs of SSR primers were successfully amplified in tea plant DNA. The tea BAC library was a critical resource to accomplish de novo whole-genome sequencing, accelerate gene discovery and enhance molecular breeding of C. sinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allouis S, Qi X, Lindup S, Gale M, Devos K (2001) Construction of a BAC library of pearl millet, Pennisetum glaucum. Theor Appl Genet 102:1200–1205

    Article  CAS  Google Scholar 

  • Ammiraju JS, Meizhong L, Goicoechea JL, Wenming W, Dave K, Christopher M et al (2006) The Oryza bacterial artificial chromosome library resource: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza. Genome Res 16:140–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Ammiraju JS, Lu F, Abhijit S, Yeisoo Y, Song X, Jiang N et al (2008) Dynamic evolution of Oryza genomes is revealed by comparative genomic analysis of a genus-wide vertical data set. Plant Cell 20:3191–3209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anistoroaei R, ten Hallers B, Nefedov M, Christensen K, de Jong P (2011) Construction of an American mink Bacterial Artificial Chromosome (BAC) library and sequencing candidate genes important for the fur industry. BMC Genomics 12:354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auvichayapat P, Montira P, Oratai T, Narong A (2008) Effectiveness of green tea on weight reduction in obese Thais: a randomized, controlled trial. Physiol Behav 93:486–491

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Fu B, Wu K, Li N, Zhou Y, Gao Z et al (2014) Construction and characterization of three wheat bacterial artificial chromosome libraries. Int J Mol Sci 15:21896–21912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cenci A, Chantret N, Kong X, Gu Y, Andersonet OD, Fahima T, Distelfeld A, Dubcovsky J (2003) Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp. durum). Theor Appl Genet 107:931–939

    Article  CAS  PubMed  Google Scholar 

  • Chen, P. (2010). Shading effects and influences on photosynthesis and quality component of tea in tea plantation. Hunan Agricultural University

  • Chen M, SanMiguel P, De Oliveira A, Woo S-S, Zhang H, Wing R, Bennetzen J (1997) Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. Proc Natl Acad Sci 94:3431–3435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Gernot P, Barbazuk B, Goicoechea J, Barbara B, Fang G et al (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545

    Article  PubMed  PubMed Central  Google Scholar 

  • David P, Sévignac M, Thareau V, Catillon Y, Kami J, Gepts P, Thierry L, Vale’rie G (2008) BAC end sequences corresponding to the B4 resistance gene cluster in common bean: a resource for markers and synteny analyses. Mol Gen Genomics 280:521–533

    Article  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phredII Error probabilities. Genome Res 8:186–194

    Article  CAS  PubMed  Google Scholar 

  • Feng C, Bluhm BH, Correll JC (2015) Construction of a spinach bacterial artificial chromosome (BAC) library as a resource for gene identification and marker development. Plant Molecular. Biology Reporter:1–10

  • Frary A, Hamilton CM (2001) Efficiency and stability of high molecular weight DNA transformation: an analysis in tomato. Transgenic Res 10:121–132

    Article  CAS  PubMed  Google Scholar 

  • Gordon D (2003) Viewing and editing assembled sequences using Consed. Current protocols in bioinformatics 11.12(11-11.12):43

    Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    Article  CAS  PubMed  Google Scholar 

  • Havecker ER, Gao X, Voytas DF (2004) The diversity of LTR retrotransposons. Genome Biol 5:225–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodgson JM, Croft KD, Woodman RJ, Puddey IB, Fuchs D, Draijer R, Lukoshkova E, Head GA (2013) Black tea lowers the rate of blood pressure variation: a randomized controlled trial. Am J Clin Nutr 97:943–950

    Article  CAS  PubMed  Google Scholar 

  • Hollman PC, Feskens EJ, Katan MB (1999) Tea flavonols in cardiovascular disease and cancer epidemiology. Proc Soc Exp Biol Med 220:198–202

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Tong Y, Zhang Q-J, Gao L-Z (2013) Genome size variation among and within camellia species by using flow cytometric analysis. PLoS One 8:e64981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Initiative AG (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796

    Article  Google Scholar 

  • Janda J, Šafář J, Kubaláková M, Jet B, Kovářová P, Suchánková P et al (2006) Advanced resources for plant genomics: a BAC library specific for the short arm of wheat chromosome 1B. Plant J 47:977–986

    Article  CAS  PubMed  Google Scholar 

  • Jia X, Deng Y, Sun X, Liang L, Ye X (2015) Characterization of the global transcriptome using Illumina sequencing and novel microsatellite marker information in seashore paspalum. Genes Genomics 37:77–86

    Article  CAS  Google Scholar 

  • Jin Q, Chen Z, Sun W, Lin F, Xue Z, Huang Y, Tang X (2016) Cloning and Bioinformatical analysis of anthocyanin synthase gene and its promoter in Camellia sinensis. J Tea Sci 36:219–228

    Google Scholar 

  • Kofler R, Schlötterer C, Lelley T (2007) SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics 23:1683–1685

    Article  CAS  PubMed  Google Scholar 

  • Kuehnbaum NL, Kormendi A, Britz-McKibbin P (2013) Multisegment injection-capillary electrophoresis-mass spectrometry: a high-throughput platform for metabolomics with high data fidelity. Anal Chem 85:10664–10669

  • Li P (2005) International Rice Genome Sequencing Project. 2005. The map-based sequence of the rice genome. Nature 436:793–800

  • Liang Y, Ma W, Lu J, Wu Y (2001) Comparison of chemical compositions of Ilex latifolia Thumb and Camellia sinensis L. Food Chem 75:339–343

    Article  CAS  Google Scholar 

  • Lin J, Kudrna D, Wing RA (2011) Construction, characterization, and preliminary BAC-end sequence analysis of a bacterial artificial chromosome library of the tea plant (Camellia sinensis) J Biomed Biotechnol 2011:476723

  • Lin H, Xia P, Wing RA, Zhang Q, Luo M (2012) Dynamic intra-japonica subspecies variation and resource application. Mol Plant 5:218–230

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Gao L, Liu L, Yang Q, Lu Z, Nie Z, Wang Y, Xia T (2012) Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant (Camellia sinensis). J Biol Chem 287:44406–44417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Yuan D, Si H, Pang X, Tang X, Yang J (2013a) Effects of shading on ingredients of tea shoots in different seasons. Southwest China J Agric Sci 26:115–118

  • Liu C, Guo Y, Lu T, Wu H, Na R, Li X, Guan W, Ma Y (2013b) Construction and preliminary characterization analysis of Wuzhishan miniature pig bacterial artificial chromosome library with approximately 8-fold genome equivalent coverage. Biomed Res Int 

  • Lu F, Ammiraju JS, Sanyal A, Zhang S, Song R, Chen J, Li G, Sui Y, Song X et al (2009) Comparative sequence analysis of MONOCULM1-orthologous regions in 14 Oryza genomes. Proc Natl Acad Sci 106:2071–2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Wing RA (2003) An improved method for plant BAC library construction. In: Plant functional genomics. Springer, pp 3–19

  • Ma J, Zhou Y, Ma C, Yao M, Jin J, Wang X, Chen L (2010) Identification and characterization of 74 novel polymorphic EST-SSR markers in the tea plant, Camellia sinensis (Theaceae). Am J Bot 97:e153–e156

    Article  CAS  PubMed  Google Scholar 

  • Mahmood T, Akhtar N, Khan BA (2010) The morphology, characteristics, and medicinal properties of Camellia sinensis’ tea. J Med Plants Res 4:2028–2033

    Article  Google Scholar 

  • Mamati GE, Liang Y, Lu J (2006) Expression of basic genes involved in tea polyphenol synthesis in relation to accumulation of catechins and total tea polyphenols. J Sci Food Agric 86:459–464

    Article  CAS  Google Scholar 

  • Matsuura T, Kakuda T (1990) Effects of precursor, temperature, and illumination on Theanine accumulation in tea callus. Agric Biol Chem 37:2033–2051

    Google Scholar 

  • Messing J, Llaca V (1998) Importance of anchor genomes for any plant genome project. Proc Natl Acad Sci 95:2017–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilmalgoda SD, Cloutier S, Walichnowski AZ (2003) Construction and characterization of a bacterial artificial chromosome (BAC) library of hexaploid wheat (Triticum aestivum L.) and validation of genome coverage using locus-specific primers. Genome 46:870–878

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan DM, Ripoll P, Rodgers M, Edwards K (2001) A maize bacterial artificial chromosome (BAC) library from the European flint inbred line F2. Theor Appl Genet 103:425–432

    Article  Google Scholar 

  • Pan Y, Deng Y, Lin H, Kudrna DA, Wing RA, Li L, Zhang Q, Luo M (2014) Comparative BAC-based physical mapping of Oryza sativa ssp. indica var. 93–11 and evaluation of the two rice reference sequence assemblies. Plant J 77:795-805

  • Rozen S, Skaletsky H (1999) Primer3 on the WWW for general users and for biologist programmers. Bioinforma Methods Protocol:365–386

  • Sanmiguel P, Bennetzen JL (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot 82:37–44

    Article  CAS  Google Scholar 

  • Sasazuki S, Tamakoshi A, Matsuo K, Ito H, Wakai K, Nagata C, Mizoue T, Tanaka K, Tsuji I, Inoue M, Tsugane S (2012) Green tea consumption and gastric cancer risk: an evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn J Clin Oncol 42:335–346

    Article  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Schulte D, Ariyadasa R, Shi B, Fleury D, Saski C, Atkins M, Pieter D, Wu C, Andreas G, Peter L, Nils S (2011) BAC library resources for map-based cloning and physical map construction in barley (Hordeum vulgare L.) Bmc Genomics 12:247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi C, Yang H, Wei C, Yu O, Zhang JC, Sun J, Li Y, Chen Q, Xia T, Wan X (2011a) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 12:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Zeng H, Xue Y, Luo M (2011b) A pair of new BAC and BIBAC vectors that facilitate BAC/BIBAC library construction and intact large genomic DNA insert exchange. Plant Methods 7:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shizuya H, Birren B, Kim U-J, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci 89:8794–8797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Goicoechea J, Ammiraju J, Luo M, He R, Lin J et al (2011) The 19 genomes of Drosophila: a BAC library resource for genus-wide and genome-scale comparative evolutionary research. Genetics 187:1023–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi F, Hirai, N. and Yamaguchi, S, (2006) Estimation of the genome size of tea (Camellia sinensis), camellia (C. japonica), and their interspecific hybrids by flow cytometry. Journal of the Remote Sensing Society of Japan (Japan):1-7

  • Tomkins J, Davis G, Main D, Yim Y, Duru N, Musket T, Goicoechea J, Frisch D, Coe E, Wing R (2002) Construction and characterization of a deep-coverage bacterial artificial chromosome library for maize. Crop Sci 42:928–933

    Article  CAS  Google Scholar 

  • Trapnell C, Pachter L, Salzberg S (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Dooner HK (2012) Dynamic evolution of bz orthologous regions in the Andropogoneae and other grasses. Plant J 72:212–221

    Article  CAS  PubMed  Google Scholar 

  • Wang GL, Holsten TE, Song WY, Wang HP, Ronald PC (1995) Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa-21 disease resistance locus. Plant J 7:525–533

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Gao L, Shan Y, Liu Y, Tian Y, Xia T (2012) Influence of shade on flavonoid biosynthesis in tea ( Camellia sinensis (L.) O. Kuntze). Sci Hortic 141:7–16

    Article  CAS  Google Scholar 

  • Wang C, Shi X, Liu L, Li H, Ammiraju J, Kudrna D, Xiong W, Wang H et al (2013a) Genomic resources for gene discovery, functional genome annotation, and evolutionary studies of maize and its close relatives. Genetics 195:723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhao Q, Ma C, Zhang Z, Cao H, Kong Y (2013b) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14:415

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Liu Q, Wang H, Luo C-X, Wang G, Luo M (2013c) A BAC based physical map and genome survey of the rice false smut fungus Villosiclava virens. BMC Genomics 14:883

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Kudrna D, Pan Y, Wang H, Liu L, Lin H, Zhang J, Song X et al (2014a) Global genomic diversity of Oryza sativa varieties revealed by comparative physical mapping. Genetics 196:937–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Xu Y, Gao L, Yu O, Wang X, He X, Jiang X, Liu Y, Xia T (2014b) Functional analysis of Flavonoid 3′ 5′-hydroxylase from ea plant (Camellia sinensis): critical role in the accumulation of catechins. BMC Plant Biol 14:347

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei F, Zhang J, Zhou S, He R, Schaeffer M, Collura K et al (2009) The physical and genetic framework of the maize B73 genome. PLoS Genet 5:e1000715

    Article  PubMed  PubMed Central  Google Scholar 

  • Woo S-S, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 22:4922–4931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Nimmakayala P, Santos F, Springman R, Scheuring C, Meksem K, Lightfoot D, Zhang H (2004) Construction and characterization of a soybean bacterial artificial chromosome library and use of multiple complementary libraries for genome physical mapping. Theor Appl Genet 109:1041–1050

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Chen D, Li J, Yu B, Qiao X, Huang H, He Y (2013) De novo characterization of leaf transcriptome using 454 sequencing and development of EST-SSR markers in tea (Camellia sinensis). Plant Mol Biol Report 31:524–538

    Article  CAS  Google Scholar 

  • Wu Z, Li X, Liu Z, Xu Z, Zhuang J (2014) De novo assembly and transcriptome characterization: novel insights into catechins biosynthesis in Camellia sinensis. BMC Plant Biol 14:277

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia Z, Wu H, Watanabe S, Harada K (2014) Construction and targeted retrieval of specific clone from a non-gridded soybean bacterial artificial chromosome library. Anal Biochem 444:38–40

    Article  CAS  PubMed  Google Scholar 

  • Xia E, Zhang H, Sheng J, Li K, Zhang Q, Kim C, et al (2017) The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant

  • Yen G, Chen H (1995) Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agric Food Chem 43:27–32

    Article  CAS  Google Scholar 

  • Yim Y, Davis G, Duru N, Musket T, Linton E, Messing J, McMullen M, Soderlund C, Polacco M, Gardiner J, Coe E (2002) Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization. Plant Physiol 130:1686–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H, Zhou J et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Xia E, Huang H, Jiang J, Liu B, Gao L (2015) De novo transcriptome assembly of the wild relative of tea tree (Camellia taliensis) and comparative analysis with tea transcriptome identified putative genes associated with tea quality and stress response. BMC Genomics 16:298

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Choi S, Johnston AK, Wing RA, Dean RA (1997) A large-insert (130 kbp) bacterial artificial chromosome library of the rice blast fungus Magnaporthe grisea: genome analysis, contig assembly, and gene cloning. Fungal Genet Biol 21:337–347

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work received financial support from the Science and Technology Project of AnHui Province, China (Project 13Z03012), Tea Genome Project of AnHui Province, China, the Special Innovative Province Construction in Anhui province in 2015 (15czs08032), the Central Guiding the Science and Technology Development of the Local (2016080503B024), the Major Project of Chinese National Programs for Fundamental Research and Development (2012CB722903), the Natural Science Foundation of Anhui Province (No.1608085QC60), and the Youth Foundation of Anhui Agricultural University (2016ZR012). We appreciate Chun Liu (Beijing Genome Institute at Shenzhen, China) for technical support and analysis. We are grateful to the unknown editor at the elixigen editing service (ID151023-6181) for the English polishing.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiment: WC and SJ; analyzing data: WL, WH, TL, JY, LZ, YH, and DW; experiment: SL, DZ, SY, HB, WQ, and LM. TL and WH contributed to writing the text.

Corresponding authors

Correspondence to Xiaochun Wan or Jun Sun.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Communicated by W.-W. Guo

Data achieving statement

The raw data of tea plant BAC are now are available in the NCBI SRA under project accession number PRJNA385558. The experiment accession numbers were SRX2982355. The BAC sequences of tea plant will be submitted to the European Nucleotide Archive database (ENA; http://www.ebi.ac.uk/ena) under project number accession PRJEB21650 if the manuscript is accepted for publication in the tree genetics and genomes prior to publication.

The Illumina RNA-seq data used in this study has been deposited in the NCBI SRA (http://trace.ncbi.nlm.nih.gov/Traces/sra) with accessions SRR1928149.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tai, Y., Wang, H., Wei, C. et al. Construction and characterization of a bacterial artificial chromosome library for Camellia sinensis . Tree Genetics & Genomes 13, 89 (2017). https://doi.org/10.1007/s11295-017-1173-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-017-1173-5

Keywords

Navigation