Skip to main content
Log in

Breadfruit (Artocarpus altilis) gibberellin 20-oxidase genes: sequence variants, stem elongation and abiotic stress response

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Breadfruit (Artocarpus altilis) is a traditional staple tree crop throughout the tropics. Susceptibility to windstorm damage is the primary constraint on breadfruit cultivation. Significant tree loss due to intense tropical windstorm in the past decades has driven an increasing interest in developing dwarf varieties of breadfruit. As a first step toward understanding the molecular mechanism of growth regulation in the species, we investigated the role of gibberellin and the regulation of GA20-oxidase genes in breadfruit. We provided first evidence that the stem elongation in breadfruit could be manipulated by exogenous gibberellin-related growth regulators. We then cloned six GA20-oxidase cDNAs, AaGA20ox1AaGA20ox6, in full length from breadfruit. Sequence analysis showed that the predicted proteins of the AaGA20ox1–AaGA20ox3 bear all the hallmarks of functional GA20-oxidase of other species, but predicted AaGA20ox4AaGA20ox6 as expressed, unprocessed pseudogenes closely related to AaGA20ox2. AaGA20ox1, AaGA20ox3 and AaGA20ox4 were predominantly expressed in green vegetative organs, but displayed different expression pattern in roots and reproductive organs. AaGA20ox2, AaGA20ox5 and AaGA20ox6 were expressed mainly in leaves at low level. AaGA20ox1, AaGA20ox3–AaGA20ox6 were subjected to GA feedback regulation following treatment of exogenous gibberellin and/or gibberellin biosynthesis inhibitors. AaGA20ox1 and AaGA20ox3 were down-regulated under drought and salinity stress, but AaGA20ox2 was up-regulated under salt stress. Pseudogenes AaGA20ox4 and AaGA20ox5 were up-regulated under drought or/and salt stress condition. The function of AaGA20oxs is discussed with particular reference to their role in stem elongation and involvement in abiotic stress response in breadfruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barboza L, Effgen S, Alonso-Blanco C, Kooke R, Keurentjes JJB, Koornneef M, Alcazar R (2013) Arabidopsis semidwarfs evolved from independent mutations in GA20ox1, ortholog to green revolution dwarf alleles in rice and barley. Proc Natl Acad Sci U S A. 110(39): 15818–15823

  • Busov VB, Brunner AM, Strauss SH (2008) Genes for control of plant stature and form. New Phytol 177:589–607

    Article  CAS  PubMed  Google Scholar 

  • Busov VB, Meilan R, Pearce DW, Ma C, Rood SB, Strauss SH (2003) Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiol 132:1283–1291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carrera E, Jackson S, Prat S (1999) Feedback control and diurnal regulation of gibberellin 20-oxidase transcript levels in potato. Plant Physiol 119:765–773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chandler PM, Marion-Poll A, Ellis M, Gubler F (2002) Mutants at the slender1 locus of barley cv Himalaya: molecular and physiological characterization. Plant Physiol 129:181–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Costes E, Garci’a-Villanueva E (2007) Clarifying the effects of dwarfing rootstock on vegetative and reproductive growth during tree development: a study on apple trees. Anal Bot 100:347–357

    Article  CAS  Google Scholar 

  • Eriksson M, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788

    Article  CAS  PubMed  Google Scholar 

  • Foster TM, Watson AE, van Hooijdonk BM, Schaffer RJ (2014) Key flowering genes including FT-like genes are upregulated in the vasculature of apple dwarfing rootstocks. Tree Genet Genomes 10:189–202

    Article  Google Scholar 

  • Gallego-Giraldo L, Ubeda-Tomás S, Gisbert C, García-Martínez JL, Moritz T, López-Díaz I (2008) Gibberellin homeostasis in tobacco is regulated by gibberellin metabolism genes with different gibberellin sensitivity. Plant Cell Physiol 49:679–690

    Article  CAS  PubMed  Google Scholar 

  • García-Martínez JL, López-Diaz I, Sánchez-Beltrán MJ, Phillips AL, Ward DA, Gaskin P, Hedden P (1997) Isolation and transcript analysis of gibberellin 20-oxidase genes in pea and bean in relation to fruit development. Plant Mol Biol 33:1073–1084

    Article  PubMed  Google Scholar 

  • Giacomelli L, Rota-Stabelli O, Masuero D, Acheampong AK, Moretto M, Caputi L, Vrhovsek U, Moser C (2013) Gibberellin metabolism in Vitis vinifera L. during bloom and fruit-set: functional characterization and evolution of grapevine gibberellin oxidases. J Exp Bot 64(14):4403–4419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goebel R (2004) Breadfruit. Peninsula gardening notes, Department of Primary Industries and Fisheries, Queensland. Accessed 13 March 2015. http://plant.daleysfruit.com.au/l/breadfruit-tress-677.pdf

  • Goebel R (2007) Breadfruit—the Australian scene. Acta Hort (ISHS) 757:141–148

    Google Scholar 

  • Han KM, Dharmawardhana P, Arias RS, Ma C, Busov V, Strauss SH (2011) Gibberellin-associated cisgenes modify growth, stature and wood properties in Populus. Plant Biotechnol J 9(2):162–178

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Kamiya Y (1997) Gibberellin biosynthesis: enzymes, genes and their regulation. Annu Rev Plant Physiol Plant Mol Biol 48:431–460

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Phillips A (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530

    Article  CAS  PubMed  Google Scholar 

  • Janick J, Cummins J, Brown S, Hemmat M (1996) Apples. In: Janick J, Moore J (eds) Fruit breeding. Wiley, New York, pp 1–78

    Google Scholar 

  • Jia QJ, Zhang JJ, Westcott S, Zhang XQ, Bellgard M, Lance R, Li CD (2009) GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomics 9(2):255–262

    Article  CAS  PubMed  Google Scholar 

  • Jones AMP, Ragone D, Tavana NG, Bernotas DW, Murch SJ (2011) Beyond the bounty: breadfruit (Artocarpus altilis) for food security and novel foods in the 21st century. Ethnobotany Res Appl 9:129–149

    Google Scholar 

  • Jost R, Berkowitz O, Wirtz M, Hopkins L, Hawkesford M, Hell R (2000) Genomic and functional characterization of the OAS gene family encoding O-acetylserine (thiol) lyases, enzymes catalyzing the final step in cysteine biosynthesis in Arabidopsis thaliana. Gene 253:237–247

    Article  CAS  PubMed  Google Scholar 

  • Knight H, Knight M (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    Article  CAS  PubMed  Google Scholar 

  • Lange MJP, Liebrandt A, Arnold L, Chmielewska SM, Felsberger A, Freier E, Heuer M, Zur D, Lange T (2013) Functional characterization of gibberellin oxidases from cucumber, Cucumis sativus L. Phytochemistry 90:62–69

    Article  PubMed  Google Scholar 

  • Lange T (1997) Cloning gibberellin dioxygenase genes from pumpkin endosperm by heterologous expression of enzyme activities in Escherichia coli. Proc Natl Acad Sci U S A 94:6553–6558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lester D, Ross J, Ait-Ali T, Martin D, Reid J (1996) A gibberellin 20-oxidase cDNA (accession no. U58830) from pea seed (PGR 96-050). Plant Physiol 111:1353

    Article  Google Scholar 

  • Li A, Yang W, Guo X, Liu D, Sun J, Zhang A (2012a) Isolation of a gibberellin-insensitive dwarfing gene, Rht-B1e, and development of an allele-specific PCR marker. Mol Breeding 30:1443–1451

    Article  CAS  Google Scholar 

  • Li JH, Sima W, Ouyang B, Wang TT, Ziaf K, Luo ZD, Liu LF, Li HX, Chen ML, Huang YQ, Feng YQ, Hao YH, Ye ZB (2012b) Tomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis. J Exp Bot 63(18):6407–6420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2008) The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J 56(4):613–626

    Article  CAS  PubMed  Google Scholar 

  • Martin DN, Proebsting WM, Parks TD, Dougherty WG, Lange T, Lewis MJ, Gaskin P, Hedden P (1996) Feed-back regulation of gibberellin biosynthesis and gene expression in Pisum sativum L. Planta 200:159–166

    Article  CAS  PubMed  Google Scholar 

  • Maxwell A, Jones P, Murch SJ, Wiseman J, Ragone D (2013) Morphological diversity in breadfruit (Artocarpus, Moraceae): insights into domestication, conservation, and cultivar identification. Genet Resour Crop Evol 60:175–192

    Article  Google Scholar 

  • Mboup M, Fischer I, Lainer H, Stephan W (2012) Trans-species polymorphism and allele-specific expression in the CBF gene family of wild tomatoes. Mol Biol Evol 29(12):3641–3652

    Article  CAS  PubMed  Google Scholar 

  • McManus MT, Joshi S, Searle B, Pither-Joyce M, Shaw M, Leung S, Albert N, Shigyo M, Jakse J, Havey MJ, McCallum J (2012) Genotypic variation in sulfur assimilation and metabolism of onion (Allium cepa L.) III. Characterization of sulfite reductase. Phytochemistry 83:34–42

    Article  CAS  PubMed  Google Scholar 

  • Meilleur BA, Jones RR, Titchenal CA, Huang AS (2004) Hawaiian breadfruit: ethnobotany, nutrition and human ecology. University of Hawai‘i at Ma¯noa, Honolulu, Hawai‘i

    Google Scholar 

  • Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H et al (2002) Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Niu SH, Gao Q, Li ZX, Chen XY, Li W (2014) The role of gibberellin in the CBF1-mediated stress-response pathway. Plant Mol Biol Rep 32(4):852–863

    Article  CAS  Google Scholar 

  • Peng J, Richards D, Hartley N, Murphy G, Devos K, Flintham J, Beales J, Fish L, Worland A, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Phillips AL, Ward DA, Uknes S, Appleford NE, Lange T, Huttly AK, Gaskin P, Graebe JE, Hedden P (1995) Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol 108:1049–1057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Plackett ARG, Powers SJ, Fernandez-Garcia N, Urbanova T, Takebayashi Y, Seo M, Jikumaru Y, Benlloch R, Nilsson O, Ruiz-Rivero O, Phillips AL, Wilson ZA, Thomas SG, Hedden P (2012) Analysis of the developmental roles of the Arabidopsis gibberellin 20-oxidases demonstrates that GA20ox1, -2, and -3 are the dominant paralogs. Plant Cell 24(3):941–960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • QDPI (2005) Breadfruit, Australian Tropical Fruits Portal, Department of Primary Industries and Fisheries, Queensland Government. Accessed June 2015. http://www.australiantropicalfruits.org.au/tropical_fruits/produce_types/exotic_and_emerging/breadfruit/

  • Ragone D (1997) Breadfruit, Artocarpus altilis (Parkinson) Fosberg. Gatersleben/International Plant Genetic Resources Institute, Rome, Italy

    Google Scholar 

  • Ragone D (2001) Chromosome numbers and pollen stainability of three species of pacific island breadfruit (Artocarpus, Moraceae). Am J Bot 88:693–696

    Article  CAS  PubMed  Google Scholar 

  • Ragone D (2006) Artocarpus altilis (breadfruit). In: Elevitch CR (ed) Traditional trees of Pacific Islands: their culture environment and use. Permanent Agriculture Resources Holualoa, Hawaii, pp 85–100

    Google Scholar 

  • Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas SG, Phillips AL, Hedden P (2008) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53(3):488–504

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A et al (2002) A mutant gibberellin-synthesis gene in rice. Nature 416:701–702

    Article  CAS  PubMed  Google Scholar 

  • Tanaka-Ueguchi M, Itoh H, Oyama N, Koshioka M, Matsuoka M (1998) Over-expression of a tobacco homeobox gene NTH15 decreases the expression of gibberellin biosynthetic gene encoding GA20-oxidase. Plant J 15:391–400

    Article  CAS  PubMed  Google Scholar 

  • Tian JX, Du QZ, Chang MQ, Zhang DQ (2012) Allelic variation in PtGA20Ox associates with growth and wood properties in Populus spp. PLoS ONE 7(12)

  • Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Li L, Gage DA, Zeevaart JAD (1996) Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from the long-day plant spinach. Plant Physiol 110:547–554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Y, Li L, Wu K, Peeters A, Gage D, Zeevaart J (1995) The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression. Proc Natl Acad Sci U S A 92:6640–6644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Yan Z, Wang Y, Yan X, Han Y (2014) Tudor-SN, a component of stress granules, regulates growth under salt stress by modulating GA20ox3 mRNA levels in Arabidopsis. J Exp Bot 65(20):5933–5944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zerega N, Ragone D, Motley TJ (2004) Complex origins of breadfruit (Artocarpus altilis, Moraceae): implications for human migrations in Oceania. Am J Bot 91:760–766

    Article  PubMed  Google Scholar 

  • Zerega N, Wiesner-Hanks T, Ragone D, Irish B, Scheffler B, Simpson S, Zee F (2015) Diversity in the breadfruit complex (Artocarpus, Moraceae): genetic characterization of critical germplasm. Tree Genet Genome 11:1–26

    Article  Google Scholar 

  • Zhang J, Pontoppidan B, Xue J, Rask L, Meijer J (2002) The third myrosinase gene TGG3 in Arabidopsis thaliana is a pseudogene specifically expressed in stamen and petal. Physiol Plant 115:25–34

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Andriunas F, Offler CE, McCurdy DW, Patrick JW (2010) An epidermal-specific ethylene signal cascade regulates trans-differentiation of transfer cells in Vicia faba cotyledons. New Phytol 185:931–943

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, O’Hare TJ, Jobin-Decor M, Underhill SJR, Wills RB, Graham MW (2003) Transcriptional regulation of a pineapple polyphenol oxidase gene and its relationship to blackheart. Plant Biotechnol J 1:463–478

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Taylor MB, Underhill SJR (2014) Dwarfing of breadfruit (Artocarpus altilis) trees: opportunities and challenges. Am J Exp Agric 4:1743–1763

    Article  Google Scholar 

  • Zhu Q, Smith SM, Ayele M, Yang L, Jogi A, Chaluvadi SR, Bennetzen JL (2012) High-throughput discovery of mutations in Tef semi-dwarfing genes by next-generation sequencing analysis. Genetics 192:819–829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zou C, Lehti-Shiu MD, Fo T-N, Prakash T, Buell CR, Shiu S-H (2009) Evolutionary and expression signatures of pseudogenes in Arabidopsis and rice. Plant Physiol 151:3–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This work was funded by the Australia Centre for International Agriculture Research (ACIAR).

Data archiving statement

The sequences of the six GA20ox genes, AaGA20ox1–AaGA20ox6, reported here are available in GenBank (http://www.ncbi.nlm.nih.gov/) under accession numbers KP979705–KP979710.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchan Zhou.

Additional information

Communicated by A. Brunner

This article is part of the Topical Collection on Adaptation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Underhill, S.J.R. Breadfruit (Artocarpus altilis) gibberellin 20-oxidase genes: sequence variants, stem elongation and abiotic stress response. Tree Genetics & Genomes 11, 84 (2015). https://doi.org/10.1007/s11295-015-0909-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0909-3

Keywords

Navigation