Skip to main content
Log in

Genetic relationships and ecological divergence in Salix species and populations in Taiwan

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Linking ecology with evolutionary biology is important to understand how environments drive population and species divergence. Phenotypically diverse Salix species, such as lowland riparian willow trees and middle- to high-elevation multistemmed shrubs and alpine dwarf shrubs, provide opportunities for studying genetic divergence driven by ecological factors. We used amplified fragment length polymorphism (AFLP) to quantify the genetic variation of 185 individuals from nine populations of four Salix species in Taiwan. Our phylogenetic analyses distinguished two riparian species and the separation of riparian species from multistemmed and dwarf shrub species. Variance partitioning for the total data found that environment explained a substantially larger proportion of genetic variation than geography. However, no genetic variation was explained by geography alone when only compared within and between species. Spatially structured regional environmental effects explained more variation than pure environments in most comparisons within and between species, suggesting that unmeasured environmental variables and/or past demographic histories played important roles in shaping population and species divergence. Based on forward selection analysis, annual mean temperature, aspect, and fraction of absorbed photosynthetically active radiation were the most influential ecological factors in shaping genetic variation within and between species. Nevertheless, different combinations of environmental variables correlated significantly with genetic variation within and between species. We identified eight AFLP loci that potentially evolved under selection intraspecifically using different outlier detection methods. These loci correlated with more than one environmental variable, suggesting local adaptation along environmental gradients at the population level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen AP, Gillooly JF, Savage VM, Brown JH (2006) Kinetic effects of temperature on rates of genetic divergence and speciation. Proc Natl Acad Sci U S A 103:9130–9135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alsos IG, Alm T, Normand S, Brochmann C (2009) Past and future range shifts and loss of diversity in dwarf willow (Salix herbacea L.) inferred from genetic, fossils, and modelling. Glob Ecol Biogeogr 18:223–239

    Article  Google Scholar 

  • Argus GW (1997) Infrageneric classification of Salix (Salicaceae) in the New World. Systematic Botany Monographs, Vol 52, The American Society of Plant taxonomists, USA

  • Azuma T, Kajita T, Yokoyama J, Ohashi H (2000) Phylogenetic relationships of Salix (Salicaceae) based on rbcL sequence data. Am J Bot 87:67–75

    Article  CAS  PubMed  Google Scholar 

  • Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13:969–980

    Article  CAS  PubMed  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc London B 263:1619–1626

    Article  Google Scholar 

  • Berlin S, Fogelqvist J, Lascoux M, Lagercrantz U, Rönnberg-Wästljung AC (2011) Polymorphisms and divergence in two willow species, Salix viminalis L. and Salix schwerinii E. Wolf. G3. Glob Ecol Biogeogr 1:387–400

    CAS  Google Scholar 

  • Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632

    Article  PubMed  Google Scholar 

  • Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758

    Article  CAS  PubMed  Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbor matrices. Ecol Model 153:51–68

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  • Bothwell H, Bisbing S, Therkildsen NO, Crawford L, Alvarez N, Holderegger R, Manel S (2013) Identifying genetic signatures of selection in a non-model species, alpine gentian (Gentiana nivalis L.), using a landscape genetic approach. Conserv Genet 14:467–481

    Article  Google Scholar 

  • Brunsfeld SJ, Soltis DE, Soltis PS (1992) Evolutionary patterns and processes in Salix sect. Longifoliae: evidence from chloroplast DNA. Syst Bot 17:239–256

    Article  Google Scholar 

  • Bryant D, Moulton V (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265

    Article  CAS  PubMed  Google Scholar 

  • Chang C-T, Lin T-C, Lin N-H (2009) Estimating the critical load and the environmental and economic impact of acid deposition in Taiwan. J Geogr Sci 56:39–58

    Google Scholar 

  • Chang C-T, Wang S-F, Vadeboncoeur MA, Lin T-C (2014) Relating vegetation dynamics to temperature and precipitation at monthly and annual timescales in Taiwan using MODIS vegetation indices. Int J Remote Sens 35:598–620

    Article  Google Scholar 

  • Chen J-H, Sun H, Wen J, Yang Y-P (2010) Molecular phylogeny of Salix L. (Salicaceae) inferred from three chloroplast datasets and its systematic implications. Taxon 59:29–37

    Google Scholar 

  • Choat B, Sack L, Holbrook NM (2007) Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytol 175:686–698

    Article  PubMed  Google Scholar 

  • Cooper RL, Cass DD (2001) Comparative evaluation of vessel elements in Salix spp. (Salicaceae) endemic to the Athabasca sand dunes of northern Saskatchewan, Canada. Am J Bot 88:583–587

    Article  CAS  PubMed  Google Scholar 

  • Craine JM, Ocheltree TW, Nippert JB, Towne EG, Skibbe AM, Kemble SW, Fargione JE (2013) Global diversity of drought tolerance and grassland climate-change resilience. Nat Clim Chang 3:63–67

    Article  Google Scholar 

  • Crawford KM, Rudgers JA (2012) Plant species diversity and genetic diversity within a dominant species interactively affect plant community biomass. Plant Ecol 100:1512–1521

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochem Bull 19:11–15

    Google Scholar 

  • Dray S (2013) Packfor: forward selection with permutation (Canoco p.46), R package version 0.0-8. Available at: http://r-forge.r-project.org/R/?group_id=195. Accessed 25 Oct 2013

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  • Excoffier L, Hofer T, Foll M (2009) Detecting loci under selection in a hierarchically structured population. Heredity 103:285–298

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fang Z-F (1987) On the distribution and origin of Salix in the world. Acta Phys Sin 25:307–313

    Google Scholar 

  • Fang J-Y, Chung J-D, Chiang Y-C, Chang C-T, Chen C-Y, Hwang S-Y (2013) Divergent selection and local adaptation in disjunct populations of an endangered conifer, Keteleeria davidiana var. formosana (Pinaceae). PLoS One 8:e70162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feder JL, Egan SP, Nosil P (2012) The genomics of speciation-with-gene-flow. Trends Genet 28:342–350

    Article  CAS  PubMed  Google Scholar 

  • Fensholt R, Sandholt I, Rasmussen MS (2004) Evaluation of MODIS LAI, fPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sens Environ 91:490–507

    Article  Google Scholar 

  • Fishbein M, Hibsch-Jetter C, Soltis DE, Hufford L (2001) Phylogeny of Saxifragales (Angiosperms, Eudicots): analysis of a rapid, ancient radiation. Syst Biol 50:817–847

    Article  CAS  PubMed  Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    Article  PubMed Central  PubMed  Google Scholar 

  • Givnish TJ (2010) Ecology of plant speciation. Taxon 59:1326–1366

    Google Scholar 

  • Gray MM, St Amand P, Bello NM, Galliart MB, Knapp M, Garrett KA, Morgan TJ, Baer SG, Maricle BR, Akhunov ED (2014) Ecotypes of an ecologically dominant prairie grass (Andropogon gerardii) exhibit genetic divergence across the US Midwest grasslands’ environmental gradient. Mol Ecol 23:6011–6028

    Article  CAS  PubMed  Google Scholar 

  • Günther T, Coop G (2013) Robust identification of local adaptation from allele frequencies. Genetics 195:205–220

    Article  PubMed Central  PubMed  Google Scholar 

  • Hardig TM, Anttila CK, Brunsfeld (2010) A phylogenetic analysis of Salix (Salicaceae) based on matK and ribosomal DNA sequence data. J Bot Article ID 197696

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatology 25:1965–1978

    Article  Google Scholar 

  • Hörsch B (2003) Modelling the spatial distribution of montane and subalpine forests in the central Alps using digital elevation models. Ecol Model 168:267–282

    Article  Google Scholar 

  • Hsieh Y-C, Chung J-D, Wang C-N, Chang C-T, Chen C-Y, Hwang S-Y (2013) Historical connectivity, contemporary isolation and local adaptation in a widespread but discontinuously distributed species endemic to Taiwan, Rhododendron oldhamii (Ericaceae). Heredity 111:147–156

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang C-L, Chen J-H, Tsang M-H, Chung J-D, Chang C-T, Hwang S-Y (2015) Influences of environmental and spatial factors on genetic and epigenetic variations in Rhododendron oldhamii (Ericaceae). Tree Genet Genomes 11:823

    Article  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213

    Article  Google Scholar 

  • Huson DG, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jeffreys H (1961) Theory of probability, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Jenkins DG, Carey M, Czerniewska J, Fletcher J, Hether T, Jones A, Knight S, Knox J, Long T, Mannino M, McGuire M, Riffle A, Segelsky S, Shappell L, Sterner A, Strickler T, Tursi R (2010) A meta-analysis of isolation by distance: relic or reference standard for landscape genetics? Ecography 33:315–320

    Google Scholar 

  • Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed Central  PubMed  Google Scholar 

  • Jump AS, Hunt JM, Martínez-Izquierdo JA, Peñuelas J (2006) Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol Ecol 15:3469–3480

    Article  CAS  PubMed  Google Scholar 

  • Karol KG, Arumugamathan K, Boore JL, Duffy AM, Everett KDE, Hall JD, Hansen SK, Kuehl JV, Mandoli DF, Mishler BD, Olmstead RG, Renzaglia KS, Wolf PG (2010) Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages. BMC Evol Biol 10:321

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee C-R, Mitchell-Olds T (2011) Complex trait divergence contributes to environmental niche differentiation in ecological speciation of Boechera stricta. Mol Ecol 22:2204–2217

    Article  Google Scholar 

  • Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun I-F, He FL (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90:663–674

    Article  PubMed  Google Scholar 

  • Liew PM, Lee CY, Kuo CM (2006) Holocene thermal optimal and climate variability of East Asian monsoon inferred from forest reconstruction of a subalpine pollen sequences, Taiwan. Earth Plan Sci Lett 250:596–605

    Article  CAS  Google Scholar 

  • Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, Holderegger R, Gielly L, Taberlet P, IntraBioDiv Consortium (2012) Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol Ecol 21:3729–2738

    Article  PubMed Central  PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Manel S, Poncet BN, Legendre P, Gugerli F, Holderegger R (2010) Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol Ecol 19:3824–3835

    Article  PubMed  Google Scholar 

  • Mulder CPH, Uliassi DD, Doak DZF (2001) Physical stress and diversity-productivity relationships: the role of positive interactions. Proc Natl Acad Sci U S A 98:6704–6708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakazato T, Bogonovich M, Moyle LC (2007) Environmental factors predict adaptive phenotypic differentiation within and between two wild Andean tomatoes. Evolution 62:774–792

    Article  Google Scholar 

  • Nakazato T, Warren DL, Moyle LC (2010) Ecological and geographic modes of species divergence in wild tomatoes. Am J Bot 97:680–693

    Article  PubMed  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A 70:3321–3323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 76:5269–5273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Newsholme C (1992) Willows: the genus Salix, Illustratedthth edn. BT Batsford Ltd, London

    Google Scholar 

  • Nosil P, Harmon L, Seehausen O (2009) Ecological explanations for (incomplete) speciation. Trends Ecol Evol 24:145–156

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens HH, Wagner H (2011) Vegan: community ecology package. R package version 2.0-1. Available at: http://cran.rproject.org/web/packages/vegan/index.html. Accessed 31 Dec 2013

  • Orians CM, Bolnick DI, Roche BM, Fritz RS, Floyd T (1999) Water availability alters the relative performance of Salix sericea, Salix eriocephala, and their F1 hybrids. Can J Bot 77:514–522

    Google Scholar 

  • Papadopulos AS, Kaye M, Devaux C, Hipperson H, Lighten J, Dunning LT, Hutton I, Baker WJ, Butlin RK, Savolainen V (2014) Evaluation of genetic isolation within and island flora reveals unusually widespread local adaptation and supports sympatric speciation. Phil Trans R Soc B 369:20130342

    Article  PubMed Central  PubMed  Google Scholar 

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    Article  PubMed  Google Scholar 

  • Pérez-Figueroa A, García-Pereira MJ, Saura M, Rolán-Alvarez CA (2010) Comparing three different methods to detect selective loci using dominant markers. J Evol Biol 23:2267–2276

    Article  PubMed  Google Scholar 

  • Pittermann J, Stuart SA, Dawson TE, Moreau A (2012) Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers. Proc Natl Acad Sci U S A 109:9647–9652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poncet BN, Herrmann D, Gugerli F, Taberlet P, Holderegger R, Gielly L, Rious D, Thuiller W, Aubert S, Manel S (2010) Tracking genes of ecological relevance using a genome scan in two independent regional population samples of Arabis alpina. Mol Ecol 19:2896–2907

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing, version 3.0.0. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/

  • Räsänen K, Hendry AP (2008) Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification. Ecol Lett 11:624–636

    Article  PubMed  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rosenberg NJ, Blat BL, Verma SB (1983) Microclimate: the biological environment. Wiley, New York

    Google Scholar 

  • Savage JA, Cavender-Bares JM (2011) Contrasting drought survival strategies of sympatric willows (genus: Salix): consequences for coexistence and habitat specialization. Tree Physiol 31:604–614

    Article  PubMed  Google Scholar 

  • Schlüter D (2001) Ecology and the origin of species. Trends Ecol Evol 16:372–380

    Article  PubMed  Google Scholar 

  • Schlüter D (2009) Evidence for ecological speciation and its alternative. Science 323:737–741

    Article  PubMed  Google Scholar 

  • Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprint data sets containing missing data. Mol Ecol Notes 6:569–572

    Article  Google Scholar 

  • Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall FG, Berry JA, Collatz CJ, Denning AS, Mooney HA, Nobre CA, Sato N (1997) Modelling the exchanges of energy, water, and carbon between the continents and the atmosphere. Science 275:502–509

    Article  CAS  PubMed  Google Scholar 

  • Silvertown J, Dodd ME, Gowing DJG, Mountford JO (1999) Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400:61–63

    Article  CAS  Google Scholar 

  • Skvortsov AK (1999) Willows of Russian and adjacent countries. Taxonomical and geographical revision. University of Joensuu, Joensuu

    Google Scholar 

  • Stölting KN, Nipper R, Lindtke D, Caseys C, Waeber S, Castiglione S, Lexer C (2013) Genomic scan for single nucleotide polymorphisms reveals patterns of divergence and gene flow between ecologically divergent species. Mol Ecol 22:842–855

    Article  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142

    Article  CAS  PubMed  Google Scholar 

  • Strasburg JL, Sherman NA, Wright KM, Moyle LC, Willis JH, Rieseberg LH (2012) What can patterns of differentiation across plant genomes tell us about. Phil Trans R Soc B 367:364–373

    Article  PubMed Central  PubMed  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M, Roldán-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151

    Article  CAS  PubMed  Google Scholar 

  • Via S (2009) Natural selection in action during speciation. Proc Natl Acad Sci U S A 106:9939–9946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2011) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van der Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang IJ, Glor RE, Losos JB (2013) Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol Lett 16:175–182

    Article  PubMed  Google Scholar 

  • Wichura ME (1865) Die Bastardbefruchtung im Pflanzenreich erläutert an den Bastarden der Weiden. Verlag von EM orgenstern, Breslau

    Book  Google Scholar 

  • Wolf JBW, Lindell J, Backström N (2010) Speciation genetics: current status and evolving approaches. Phil Trans R Soc B 365:1717–1733

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu CI (2001) The genic view of the process of speciation. J Evol Biol 14:851–865

    Article  Google Scholar 

  • Yang KC, Huang TC (1996) Salicaceae. In: Flora of Taiwan Editorial Committee (ed) Flora of Taiwan, vol 2, 2nd edn., pp 29–43

    Google Scholar 

  • Zhou Y, Zhang L, Liu J, Wu G, Savolainen O (2014) Climatic adaptation and ecological divergence between two closely related pine species in Southeast China. Mol Ecol 23:3504–3522

    Article  PubMed  Google Scholar 

  • Zytynska SE, Fay MF, Penny D, Preziosi RF (2011) Genetic variation in a tropical tree species influences the associated epiphytic plant and invertebrate communities in a complex forest ecosystem. Phil Trans R Soc B 366:1329–1336

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ji-Chen Wu and Fu-Long Shih for assistance with collecting samples from several Salix populations. We also thank Chien-Shan Chiu for technical assistance and Dr. Pei-Chun Liao for helpful comments. We are grateful to the Ministry of Science and Technology, Executive Yuan, Taiwan for financial support to SYH (grant number NSC101-2313-B-003-001-MY3) and CLH (grant number NSC102-2313-B-178-002-MY3).

Data archiving statement

AFLP genotyping data were deposited at Dryad: http://dx.doi.org/10.5061/dryad.8t2g6.

Compliance with ethical standards

The authors declare that all plant materials collected comply with the law of government regulation. The funder provided support for research, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

We do not have any conflict of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Ying Hwang.

Additional information

Communicated by P. Ingvarsson

Chun-Lin Huang and Chung-Te Chang contributed equally to this work.

This article is part of the Topical Collection on Evolution

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 14 kb)

ESM 2

(DOCX 15 kb)

ESM 3

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CL., Chang, CT., Huang, BH. et al. Genetic relationships and ecological divergence in Salix species and populations in Taiwan. Tree Genetics & Genomes 11, 39 (2015). https://doi.org/10.1007/s11295-015-0862-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0862-1

Keywords

Navigation