Skip to main content
Log in

Plasticity residues involved in secondary cyclization of terpene synthesis in Taiwania cryptomerioides

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Terpenoids have many biological functions and a comprehensive range of applications. Here, we cloned two monoterpene synthase genes, Tc-αpin/teo and Tc-teo, from Taiwania cryptomerioides. The enzymes encoded by these genes shared 97 % amino acid sequences similarity but had different terpene product profiles. Using structural modeling and site-directed mutagenesis, we successfully identified three plasticity residues around the active site of Tc-αPIN/TEO, namely Y327, Y429 and Y575 that are involved in secondary cyclization. The mutants in which the phenolic residues were replaced with phenylalanines seemed to lose their preference for α-pinene synthesis, indicating that the tyrosine hydroxyl groups at these sites were necessary for the formation of bicyclic terpene products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aharoni A, Gaidukov L, Khersonsky O, Gould SM, Roodveldt C, Tawfik DS (2005) The ‘evolvability’ of promiscuous protein functions. Nat Genet 37:73–76

    CAS  PubMed  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311:812–815

    Article  CAS  PubMed  Google Scholar 

  • Chang YT, Chu FH (2011) Molecular cloning and characterization of monoterpene synthases from Litsea cubeba (Lour.) Persoon. Tree Genet Genomes 7:835–844

    Article  Google Scholar 

  • Cheng SS, Chung MJ, Lin CY, Chang ST, Wang YN (2010) Plant parts from Taiwania cryptomerioides against Phellinus noxius. J Exp For Nat Taiwan Univ 24:85–95

    Google Scholar 

  • Croteau R (1987) Biosynthesis and catabolism of monoterpenoids. Chem Rev 87:929–954

    Article  CAS  Google Scholar 

  • Davis EM, Croteau R (2000) Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Top Curr Chem 209:54–95

    Google Scholar 

  • de Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580

    Article  PubMed  Google Scholar 

  • Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grassmann J, Hippeli S, Splitzenberger R, Elstner EF (2005) The monoterpene terpinolene from the oil of Pinus mugo L. in concert with alpha-tocopherol and beta-carotene effectively prevents oxidation of LDL. Phytomedicine 12:416–423

    Article  CAS  PubMed  Google Scholar 

  • Green S, Squire CJ, Nieuwenhuizen NJ, Baker EN, Laing W (2009) Defining the potassium binding region in an apple terpene synthase. J Biol Chem 284:8661–8669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Green S, Baker EN, Laing W (2011) A non-synonymous nucleotide substitution can account for one evolutionary route to sesquiterpene synthase activity in the TPS-b subgroup. FEBS Lett 585:1841–1846

    Article  CAS  PubMed  Google Scholar 

  • Harvey BG, Wright ME, Quintana RL (2010) High-density renewable fuels based on the selective dimerization of pinenes. Energy Fuel 24:267–273

    Article  CAS  Google Scholar 

  • Ibanez S, Dötterl S, Anstett MC, Baudino S, Caissard JC, Gallet C, Després L (2010) The role of volatile organic compounds, morphology and pigments of globeflowers in the attraction of their specific pollinating flies. New Phytol 188:451–463

    Article  CAS  PubMed  Google Scholar 

  • Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355

    Article  CAS  PubMed  Google Scholar 

  • Köllner TG, O'Maille PE, Gatto N, Boland W, Gershenzon J, Degenhardt J (2006) Two pockets in the active site of maize sesquiterpene synthase TPS4 carry out sequential parts of the reaction scheme resulting in multiple products. Arch Biochem Biophys 448:83–92

    Article  PubMed  Google Scholar 

  • Lesburg CA, Zhai G, Cane DE, Christianson DW (1997) Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science 277:1820–1824

    Article  CAS  PubMed  Google Scholar 

  • McAndrew RP, Peralta-Yahya PP, DeGiovanni A, Pereira JH, Hadi MZ, Keasling JD, Adams PD (2011) Structure of a three-domain sesquiterpene synthase: a prospective target for advanced biofuels production. Structure 19:1876–1884

    Article  CAS  PubMed  Google Scholar 

  • Mirov NT (1961) Composition of gum turpentines of pines. Pacific Southwest Forest and Range Experiment Station U. S. Department of Agriculture, Forest Service. Technical. Bulletin No 1239

  • Rising KA, Starks CM, Noel JP, Chappell J (2000) Demonstration of germacrene A as an intermediate in 5-epi-aristolochene synthase catalysis. J Am Chem Soc 122:1861–1866

    Article  CAS  Google Scholar 

  • Rynkiewicz MJ, Cane DE, Christianson DW (2001) Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade. Proc Natl Acad Sci U S A 98:13543–13548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Starks CM, Back K, Chappell J, Noel JP (1997) Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277:1815–1820

    Article  CAS  PubMed  Google Scholar 

  • Wendt KU, Schulz GE (1998) Isoprenoid biosynthesis: manifold chemistry catalyzed by similar enzymes. Structure 6:127–133

    Article  CAS  PubMed  Google Scholar 

  • Whittington DA, Wise ML, Urbansky M, Coates RM, Croteau RB, Christianson DW (2002) Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase. Proc Natl Acad Sci U S A 99:15375–15380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams DC, McGarvey DJ, Katahira EJ, Croteau R (1998) Truncation of limonene synthase preprotein provides a fully active ‘pseudomature’ form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry 37:12213–12220

    Article  CAS  PubMed  Google Scholar 

  • Yoshikuni Y, Ferrin TE, Keasling JD (2006) Designed divergent evolution of enzyme function. Nature 440:1078–1082

    Article  CAS  PubMed  Google Scholar 

  • Zhou K, Peters RJ (2009) Investigating the conservation pattern of a putative second terpene synthase divalent metal binding motif in plants. Phytochemistry 70:366–369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou K, Peters RJ (2011) Steroelectronic effects on (di)terpene synthase product outcome. Chem Commun 47:4074–4080

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Shang-Tzen Chang (School of Forestry and Resource Conservation, National Taiwan University) for providing the GC-MS apparatus. The financial assistance from the National Science Council (NSC 102-2628-B-002-012-MY3) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Hua Chu.

Additional information

Communicated by R. Sederoff

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, LJ., Chu, FH. Plasticity residues involved in secondary cyclization of terpene synthesis in Taiwania cryptomerioides . Tree Genetics & Genomes 11, 796 (2015). https://doi.org/10.1007/s11295-014-0796-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-014-0796-z

Keywords

Navigation