Skip to main content

Advertisement

Log in

Chloroplast diversity and population differentiation of Castanopsis fargesii (Fagaceae): a dominant tree species in evergreen broad-leaved forest of subtropical China

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Subtropical forests in China constitute the major expanse of evergreen broad-leaved forest in East Asia. The significant genetic divergence of the keystone tree species should be expected due to the huge geomorphological and environmental changes from west to east in subtropical China. In this study, a total of 652 individuals from 27 populations of Castanopsis fargesii throughout its natural range in mainland China were genotyped with eight chloroplast microsatellite markers to investigate genetic diversity, population differentiation, and demographic history of C. fargesii. Phylogeographic structure among populations of C. fargesii was evidenced by the permutation test, revealing that NST was significantly higher than GST . The strong genetic differentiation found among populations was well in accordance with isolation-by-distance model. In addition, significant isolation by elevation was detected among populations. Significant genetic differentiations were revealed among the west, center, and east regions by approximate Bayesian computations (ABC). The genetic divergence might reflect the regional responses to the fast and dramatic uplift of Yunnan-Guizhou Plateau and Wuyi mountain range in the Pleistocene. In the present study, contraction-expansion process was detected in the west, center, and east regions, indicating that geomorphological remodeling together with climatic changes in the Pleistocene had strong impact on genetic structure of C. fargesii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48, Software NETWORK available at http://www.fluxus-engineering.com

    Article  PubMed  CAS  Google Scholar 

  • Cannon CH, Manos PS (2003) Phylogeography of the Southeast Asian stone oaks (Lithocarpus). J Biogeogr 30:211–226

    Article  Google Scholar 

  • Cao BX (1990) The quaternary climate and the future climate and environmental change in China. Reg Geol China 2:97–111

    Google Scholar 

  • Chen XS, Li QJ (2008) Patterns of plant sexual systems in subtropical evergreen broad-leaved forests in Ailao Mountains, SW China. J Plant Ecol 1:179–185

    Article  Google Scholar 

  • Chen JY, Zhou XD (1993) Relationship between palaeoenvironmental change and soil development in Wuyi Mountains. Geol Fujian 12:228–231

    Google Scholar 

  • Cornuet JM, Santos F, Beaumont MA, Robert CP, Marin JM, Balding DJ, Guillemaud T, Estoup A (2008) Inferring population history with DIY ABC: a user-friendly approach to approximate Bayesian computation. Bioinformatics 24:2713–2719

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Deguilloux MF, Dumolin-Lapègue S, Gielly L, Grivet D, Petit RJ (2003) A set of primers for the amplification of chloroplast microsatellites in Quercus. Mol Ecol Notes 3:24–27

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed Central  Google Scholar 

  • Fan DM, Yue JP, Nie ZL, Li ZM, Comes HP, Sun H (2013) Phylogeography of Sophora davidii (Leguminosae) across the “Tanaka-Kaiyong Line”, an important phytogeographic boundary in southwest China. Mol Ecol 22:4270–4288

    Article  PubMed  CAS  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gao LM, Möller M, Zhang XM, Hollingsworth ML, Liu J, Mill RR, Gibby M, Li DZ (2007) High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam. Mol Ecol 16:4684–4698

  • Grivet D, Deguilloux MF, Petit RJ, Sork VL (2006) Contrasting patterns of historical colonization in white oaks (Quercus spp.) in California and Europe. Mol Ecol 15:4085–4093

    Article  PubMed  CAS  Google Scholar 

  • Harrison SP, Yu G, Takahara H, Prentice IC (2001) Diversity of temperate plants in East Asia. Nature 413:129–130

    Article  PubMed  CAS  Google Scholar 

  • Huang CJ, Bruce B (1999) Fagaceae. In: Flora of China, vol 4. Science Press, Beijing, pp 315–333

    Google Scholar 

  • Jensen J, Bohonak A, Kelley S (2005) Isolation by distance, web service. BMC Genet 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin JH, Liao WB, Wang BS, Peng SL (2003) Global change in Cenozoic and evolution of flora in China. Guihaia 23:217–225

    Google Scholar 

  • Lei M, Wang Q, Wu ZJ, López-Pujol J, Li DZ, Zhang ZY (2012) Molecular phylogeography of Fagus engleriana (Fagaceae) in subtropical China: limited admixture among multiple refugia. Tree Genet Genomes 8:1203–1212

    Article  Google Scholar 

  • Li J, Ge XJ, Cao HL, Ye WH (2007) Chloroplast DNA diversity in Castanopsis hystrix populations in south China. For Ecol Manag 243:94–101

    Article  Google Scholar 

  • Li J, Zheng Z, Huang KY, Yang SX, Chase B, Valsecchi V, Carré M, Cheddadi R (2012) Vegetation changes during the past 40,000 years in central China from a long fossil record. Quat Int. doi:10.1016/j.quaint.2012.01.009

    Google Scholar 

  • Liu MQ, Zhou ZK (2006) Modern and geological distribution of Castanopsis (Fagaceae). Acta Bot Yunnanica 28:223–235

    Google Scholar 

  • Liu RL, Wang L, Du TZ (2008) Features of population ecological quantity field of Castanopsis fabri community in Jinggang Mountain. Sci Silvae Sin 44:1–7

    Google Scholar 

  • Liu J, Moller M, Provan J, Gao LM, Poudel RC, Li DZ (2013) Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytol. doi:10.1111/nph.12336

    Google Scholar 

  • Luo D, Xiao YF, Zhan L, Zhang L (2010) The tectogenesis control of Danxia landform in southeast China. J East China Inst Technol 33:147–153

    Google Scholar 

  • Ming LR (1987) Some problems about the Quaternary geology of China. Bull Inst Geol Chin Acad Geol Sci 17:129–139

    Google Scholar 

  • Nettel A, Dodd RS, Afzal-Rafii Z (2009) Genetic diversity, structure, and demographic change in tanoak, Lithocarpus densiflorus (Fagaceae), the most susceptible species to sudden oak death in California. Am J Bot 96:2224–2233

    Article  PubMed  CAS  Google Scholar 

  • Ni J, Yu G, Harrison SP, Prentice IC (2010) Palaeovegetation in China during the late Quaternary: biome reconstructions based on a global scheme of plant functional types. Palaeogeogr Palaeoclimatol Palaeoecol 289:44–61

    Article  Google Scholar 

  • Pakkad G, Ueno S, Yoshimaru H (2008) Genetic diversity and differentiation of Quercus semiserrata Roxb. in northern Thailand revealed by nuclear and chloroplast microsatellite markers. For Ecol Manag 255:1067–1077

    Article  Google Scholar 

  • Pardo C, Cubas P, Tahiri H (2008) Genetic variation and phylogeography of Stauracanthus (Fabaceae, Genisteae) from the Iberian Peninsula and northern Morocco assessed by chloroplast microsatellite (cpssr) markers. Am J Bot 95:98–109

    Article  PubMed  Google Scholar 

  • Petit RJ, El Monsadik AE, Pons O (1998) Identifying population for conservation on the basis of genetic markers. Conserv Biol 12:551–558

    Article  Google Scholar 

  • Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245

    PubMed  CAS  PubMed Central  Google Scholar 

  • Qiu YX, Fu CX, Comes HP (2011) Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Mol Phylogenet Evol 59:225–244

    Article  PubMed  Google Scholar 

  • Ravelo AC, Andreasen DH, Lyle M, Lyle AO, Wara MW (2004) Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429:263–267

    Article  PubMed  CAS  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    PubMed  CAS  Google Scholar 

  • Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sebastiani F, Carnevale S, Vendramin GG (2004) A new set of mono- and dinucleotide chloroplast microsatellites in Fagaceae. Mol Ecol Notes 4:259–261

    Article  CAS  Google Scholar 

  • Song YC, Chen XY, Wang XH (2005) Studies on evergreen broadleaved forests of China: a retrospect and prospect. J East China Normal Univ (Nat Sci) 1:1–8

    Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tang CQ, Ohsawa M (2009) Ecology of subtropical evergreen broad-leaved forests of Yunnan, southwestern China as compared to those of southwestern Japan. J Plant Res 122:335–350

    Article  PubMed  Google Scholar 

  • Tang GB, Zhang JP, Yang XD, Luo BX, Wang YZ (1994) Late cenozoic palynoflora and environment changes in Yunnan-Guizhou Plateau. Mar Geol Quat Geol 14:91–104

    Google Scholar 

  • Wang XH, Kent M, Fang XF (2007) Evergreen broad-leaved forest in Eastern China: its ecology and conservation and the importance of resprouting in forest restoration. For Ecol Manag 245:76–87

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19

    Article  PubMed  CAS  Google Scholar 

  • Yan HF, Zhang CY, Wang FY, Hu CM, Ge XJ, Hao G (2012) Population expanding with the phalanx model and lineage split by environmental heterogeneity: a case study of Primula obconica in subtropical China. PLoS ONE 7:e41315. doi:10.1371/journal.pone.0041315

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yan F, Zhou WW, Zhao HT, Yuan ZY, Wang YY, Jiang K, Jin JQ, Murphy RW, Che J, Zhang YP (2013) Geological events play a larger role than Pleistocene climatic fluctuation in driving the genetic structure of Quasipaa boulengeri (Anura: Dicroglossidae). Mol Ecol 22:1120–1133

    Article  PubMed  Google Scholar 

  • Yang HJ, Xin X, Li GS (1989) The causal mechanism of Quaternary environmental changes in China. Quat Sci 2:97–111

    Google Scholar 

  • Yu G, Chen X, Ni J, Cheddadi R, Guiot J, Han H, Harrison SP, Huang C, Ke M, Kong Z, Li S, Li W, Liew P, Liu G, Liu J, Liu KB, Prentice IC, Qui W, Ren G, Song C, Sugita S, Sun X, Tang L, van Campo E, Xia Y, Xu Q, Yan S, Yang X, Zhao J, Zheng Z (2000) Palaeovegetation of China: a pollen data-based synthesis for the mid-Holocene and last glacial maximum. J Biogeogr 27:635–664

    Article  Google Scholar 

  • Zhang DF, Fengquan L, Jianmin B (2000) Eco-environmental effects of the Qinghai-Tibet Plateau uplift during the Quaternary in China. Environ Geol 39:1352–1358

    Article  Google Scholar 

  • Zhang TS, Li K, Wang Q, Cai YL, Yang K, Chen LQ (2006) Seed predation and dispersal of Castanopsis fargesii by rodents in Tiantong Mountain, Zhejiang province. Chin J Ecol 25:161–165

    CAS  Google Scholar 

  • Zhang ZY, Wu R, Wang Q, Zhang ZR, López-Pujol J, Fan DM, Li DZ (2013) Comparative phylogeography of two sympatric beeches in subtropical China: species-specific geographic mosaic of lineages. Ecol Evol 3:4461–4472

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank three anonymous reviewers for their critical comments. This study was financially supported by the National Natural Science Foundation of China (31170512, 30871959, and 31370668), and by the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-EW-J-28).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Sun.

Additional information

Communicated by A. Kremer

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Posterior (green) and prior (red) of each parameter in approximate Bayesian computations (ABC). T1 and T2 are the time of two divergent events. Tbn_r and Tex_r are the time of bottleneck and expansion duration in a recent event. Tnt is time of an ancestral population before T2 event. N1, N2 and N3 are the effective population size of East, Center and West region respectively. NT is the effective population size of the ancestral population. Nbn_r and Nex_r are effective population size of bottleneck and expansion in a recent event. Tbn and Tex are the time of bottleneck and expansion duration in an ancient event. Nbn and Nex are effective population size of bottleneck and expansion in an ancient event. (GIF 323 kb)

High resolution image (TIFF 197 kb)

Table S1

(DOC 40 kb)

Table S2

(DOC 73 kb)

Table S3

(DOCX 18.2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Hu, H., Huang, H. et al. Chloroplast diversity and population differentiation of Castanopsis fargesii (Fagaceae): a dominant tree species in evergreen broad-leaved forest of subtropical China. Tree Genetics & Genomes 10, 1531–1539 (2014). https://doi.org/10.1007/s11295-014-0776-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-014-0776-3

Keywords

Navigation