Skip to main content

Advertisement

Log in

Genetic structure and association mapping of adaptive and selective traits in the east Texas loblolly pine (Pinus taeda L.) breeding populations

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

First-generation selection (FGS) and second-generation selection (SGS) breeding populations of loblolly pine from east Texas were studied to estimate the genetic diversity, population structure, linkage disequilibrium (LD), signatures of selection and association of breeding traits with a genome-wide panel of 4,264 single nucleotide polymorphisms (SNPs). Relatively high levels of observed (H o = 0.178–0.198) and expected (H e = 0.180–0.198) heterozygosities were observed in all populations. The amount of inbreeding was very low with many populations exhibiting a slight excess of heterozygotes. The population structure was weak, but F ST indicated more pronounced differentiation in the SGS populations. As expected for outcrossing natural populations, the genome-wide LD was low, but marker density was insufficient to deduce the decay rate. Numerous associations were found between various phenotypic traits and SNPs, but only a few remained significant after false positive correction. Signatures of diversifying and balancing selection were found in markers representing important biological functions. These results present the first step in the application of marker-assisted selection (MAS) to the Western Gulf Forest Tree Improvement Program (WGFTIP) for loblolly pine and will contribute to the knowledgebase necessary for genomic selection technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abecasis GR, Cookson WOC (2000) GOLD — graphical overview of linkage disequilibrium. Bioinformatics 16(2):182–183

    Article  PubMed  CAS  Google Scholar 

  • Al-Maskri AY, Sajjad M, Khan SH (2012) Association mapping: a step forward to discovering new alleles for crop improvement. Int J Agric Biol 14:153–160

    Google Scholar 

  • Al-Rabab’ah MA, Williams CG (2002) Population dynamics of Pinus taeda L. based on nuclear microsatellites. For Ecol Manag 163(13):263–271

    Article  Google Scholar 

  • Al-Rabab’ah MA, Williams CG (2004) An ancient bottleneck in the lost pines of central Texas. Mol Ecol 13(5):1075–1084

    Article  PubMed  Google Scholar 

  • Antao T, Lopes A, Lopes R, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a F ST-outlier method. BMC Bioinforma 9:323

    Article  Google Scholar 

  • Bao W, O’Malley DM, Whetten R, Sederoff RR (1993) A laccase associated with lignification in loblolly pine xylem. Science 260(5108):672–674

    Article  PubMed  CAS  Google Scholar 

  • Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13:969–980

    Article  PubMed  CAS  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc Roy Soc B 263:1619–1626

    Article  Google Scholar 

  • Beaulieu J, Doerksen T, Boyle B, Clément S, Deslauriers M, Beauseigle S, Blais S, Poulin P-L, Lenz P, Caron S, Rigault P, Bicho P, Bousquet J, MacKay J (2011) Association genetics of wood physical traits in the conifer white spruce and relationships with gene expression. Genetics 188:197–214

    Article  PubMed  CAS  Google Scholar 

  • Besenbacher S, Mailund T, Schierup M (2012) Association mapping and disease: evolutionary perspectives. In: Anisimova M (ed) Evolutionary genomics: statistical and computational methods, vol 2, Methods in molecular biology, Chapter 11. Springer Science+Business Media, New York, pp 275–291

    Chapter  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635

    Article  PubMed  CAS  Google Scholar 

  • Brown GR, Bassoni DL, Gill GP, Fontana JR, Wheeler NC, Megraw RA, Davis MF, Sewell MM, Tuskan GA, Neale DB (2003) Identification of quantitative trait loci influencing wood property traits in loblolly pine [Pinus taeda (L.): III. QTL verification and candidate gene mapping. Genetics 164(4):1537–1546

    PubMed  CAS  Google Scholar 

  • Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci USA 101(42):15255–15260

    Article  PubMed  CAS  Google Scholar 

  • Byram TD, Mullin TJ, White TL, van Buijtenen JP (2005a) The future of tree improvement in the southeastern United States: alternative visions for the next decade. Southern J Appl For 29(2):88–95

    Google Scholar 

  • Byram T, Myszewski J, Gwaze D, Lowe W (2005b) Improving wood quality in the western gulf forest tree improvement program: the problem of multiple breeding objectives. Tree Genet Genomes 1:85–92

    Article  Google Scholar 

  • Cumbie W, Eckert A, Wegrzyn J, Whetten R, Neale D, Goldfarb B (2011) Association genetics of carbon isotope discrimination, height and foliar nitrogen in a natural population of Pinus taeda L. Heredity 107:105–114

    Article  PubMed  CAS  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • Echt CS, Saha S, Krutovsky KV, Wimalanathan K, Erpelding JE, Liang C, Nelson CD (2011) An annotated genetic map of loblolly pine based on microsatellite and cDNA markers. BMC Genet 12:17

    Article  PubMed  CAS  Google Scholar 

  • Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV, St Clair JB, Neale DB (2009a) Association genetics of coastal Douglas Fir (Pseudotsuga menziesii var. menziesii, Pinaceae): I. Cold-hardiness related traits. Genetics 182(4):1289–1302

    Article  PubMed  CAS  Google Scholar 

  • Eckert AJ, Pande B, Ersoz ES, Wright MH, Rashbrook VK, Nicolet CM, Neale DB (2009b) High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.). Tree Genet Genomes 5(1):225–234

    Article  Google Scholar 

  • Eckert AJ, van Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-Ibarra J, González-Martínez SC, Neale DB (2010a) Patterns of population structure and environmental associations to aridity across the range of loblolly pine [Pinus taeda (L.), Pinaceae]. Genetics 185(3):969–982

    Article  PubMed  CAS  Google Scholar 

  • Eckert AJ, Bower AD, González-Martínez SC, Wegrzyn JL, Coop G, Neale DB (2010b) Back to nature: ecological genomics of loblolly pine ([Pinus taeda], Pinaceae). Mol Ecol 19(17):3789–3805

    Article  PubMed  CAS  Google Scholar 

  • Eckert AJ, Wegrzyn JL, Cumbie WP, Goldfarb B, Huber DA, Tolstikov V, Fiehn O, Neale DB (2012) Association genetics of the loblolly pine ([Pinus taeda], Pinaceae) metabolome. New Phytol 193:890–902

    Article  PubMed  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Goddard ME, Hayes BJ (2009) Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet 10:381–391

    Article  PubMed  CAS  Google Scholar 

  • González-Martínez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006) DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 172(3):1915–1926

    Article  PubMed  Google Scholar 

  • González-Martínez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB (2007) Association genetics in Pinus taeda L.: I. Wood property traits. Genetics 175(1):399–409

    Article  PubMed  Google Scholar 

  • González-Martínez SC, Dillon S, Garnier-Géré PH, Krutovsky KV, Alía R, Burgarella C, Eckert AJ, Garcia MR, Grivet D, Heuertz M, Jaramillo-Correa JP, Lascoux M, Neale DB, Savolainen O, Tsumura Y, Vendramin GG (2011) Patterns of nucleotide diversity and association mapping. In: Plomion C, Bousquet J, Kole C (eds) Ch. 6 in Genetics, genomics and breeding of conifers. CRC Press, Science Publishers, Enfield, pp 239–275

    Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57(4):461–485

    Article  PubMed  CAS  Google Scholar 

  • Haldane J (1954) An exact test for randomness of mating. J Genet 52:631–635

    Google Scholar 

  • Hardy J, Singleton A (2009) Genome wide association studies and human disease. New Eng J Med 360:1759–1768

    Article  PubMed  CAS  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Harfouche A, Meilan R, Kirst M, Morgante M, Boerjan W, Sabatti M, Mugnozza GS (2012) Accelerating the domestication of forest trees in a changing world. Trends Plant Sci 17(2):64–72

    Article  PubMed  CAS  Google Scholar 

  • Heuertz M, De Paoli E, Källman T, Larsson H, Jurman I, Morgante M, Lascoux M, Gyllenstrand N (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce (Picea abies [L.] Karst). Genetics 174:2095–2105

    Article  PubMed  CAS  Google Scholar 

  • Homolka A, Eder T, Kopecky D, Berenyi M, Burg K, Fluch S (2012) Allele discovery of ten candidate drought-response genes in Austrian oak using a systematically informatics approach based on 454 amplicon sequencing. BMC Res Notes 5:175. doi:10.1186/1756-0500-5-175

    Article  PubMed  Google Scholar 

  • Ingvarsson PK (2005) Nucleotide Polymorphism and linkage disequilibrium within and among natural populations of European aspen (Populus tremula L., Salicaceae). Genetics 169(2):945–953

    Article  PubMed  CAS  Google Scholar 

  • Ingvarsson PK, Street NR (2011) Association genetics of complex traits in plants. New Phytol 189:909–922

    Article  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Kelleher CT, Wilkin J, Zhuang J, Cortés AJ, Quintero ÁLP, Gallagher TF, Bohlmann J, Douglas CJ, Ellis BE, Ritland K (2012) SNP discovery, gene diversity, and linkage disequilibrium in wild populations of Populus tremuloides. Tree Genet Genomes. doi:10.1007/s11295-012-0467-x (online first)

    Google Scholar 

  • Khan MA, Korban SS (2012) Association mapping in forest trees and fruit crops. J Exp Bot. doi:10.1093/jxb/ers105 (online first)

    Google Scholar 

  • Kloth KJ, Thoen MPM, Bouwmeester HJ, Jongsma MA, Dicke M (2012) Association mapping of plant resistance to insects. Trends Plant Sci 17(5):311–319

    Article  PubMed  CAS  Google Scholar 

  • Krutovsky KV, Neale DB (2005) Nucleotide diversity and linkage disequilibrium in cold-hardiness- and wood quality-related candidate genes in Douglas-fir. Genetics 171(4):2029–2041

    Article  PubMed  CAS  Google Scholar 

  • Krutovsky KV, Vaganov EA, Chubugina IV, Oreshkova NV, Tretyakova IN, Tyazhelova TV (2012) Complex genome sequencing: preliminary data of Siberian larch complete genome de novo sequencing. Microsymposium I: computational and experimental genomics. The 8th International Conference on the Bioinformatics of Genome Regulation and Structure\Systems Biology, June 25–29, 2012, Novosibirsk, Russia, p. 53 (http://conf.nsc.ru/files/conferences/BGRSSB2012/130321/Program_BGRS_SB_24_06_12.pdf)

  • Lepoittevin C, Harvengt L, Plomion C, Garnier-Géré P (2011) Association mapping for growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population. Tree Genet Genomes 8:113–126

    Article  Google Scholar 

  • Lowe WJ, van Buijtenen JP (1980) Tree improvement philosophy and strategy for the western gulf forest tree improvement program. Proceedings of the 16th North American quantitative forest genetics group workshop, Coeur D’Alene, Idaho, August 6–8, pp 43–50

  • Lowe WJ, van Buijtenen JP (1991) Progeny test data summarization procedures in the western gulf forest tree improvement program. In Proceedings of the Southern Forest Tree Improvement Conference, Knoxville, Tennessee, June 17–20, pp 303–312

  • McKeand SE, Jokela EA, Huber DA, Byram TD, Allen HL, Li B, Mullin TJ (2006a) Performance of improved genotypes of loblolly pine across different soils, climates, and silvicultural inputs. For Ecol Manag 227:178–184

    Article  Google Scholar 

  • McKeand SE, Abt RC, Lee Allen H, Li B, Catts GP (2006b) What are the best loblolly pine genotypes worth to landowners? J For 104(7):325–358

    Google Scholar 

  • Moritsuka E, Hisataka Y, Tamura M, Uchiyama K, Watanabe A, Tsumura Y, Tachida H (2012) Extended linkage disequilibrium in non-coding regions in a conifer, Cryptomeria japonica. Genetics 190(3):1145–1148

    Article  PubMed  CAS  Google Scholar 

  • Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Rajeev VK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125(4):625–645

    Google Scholar 

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12(2):111–122

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • O’Brien I, Smith D, Gardner R, Murray B (1996) Flow cytometric determination of genome size in Pinus. Plant Sci 115(1):91–99

    Article  Google Scholar 

  • Parchman TL, Gompert Z, Mudge J, Schilkey FD, Benkman CW, Buerkle CA (2012) Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol Ecol 21:2991–3005

    Article  PubMed  CAS  Google Scholar 

  • Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Quesada T, Gopal V, Cumbie WP, Eckert AJ, Wegrzyn JL, Neale DB, Goldfarb B, Huber DA, Casella G, Davis JM (2010) Association mapping of quantitative disease resistance in a natural population of loblolly pine [Pinus taeda (L.)]. Genetics 186(2):677–686

    Article  PubMed  CAS  Google Scholar 

  • Rafalski AJ (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13(2):174–180

    Article  PubMed  CAS  Google Scholar 

  • Resende MFR Jr, Muñoz P, Resende MDV, Garrick DJ, Fernando RL, Davis JM, Jokela EJ, Martin TA, Peter GF, Kirst M (2012a) Accuracy of genomic selection methods in a standard dataset of loblolly pine [Pinus taeda (L.)]. Genetics 190:1503–1510

    Article  PubMed  Google Scholar 

  • Resende MDV, Resende MFR, Sansaloni CP, Petroli CD, Missiaggia AA, Aguiar AM, Abad JM, Takahashi EK, Rosado AM, Faria DA, Pappas GJ, Kilian A, Grattapaglia D (2012b) Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol 194:116–128

    Article  PubMed  Google Scholar 

  • Ritland K (2012) Genomics of a phylum distant from flowering plants: conifers. Tree Genet Genomes 8:573–582

    Article  Google Scholar 

  • Ritland K, Krutovsky K, Tsumura Y, Pelgas B, Isabel N, Bousquet J (2011) Genetic mapping in conifers. In: Plomion C, Bousquet J, Kole C (eds) Ch. 5 in Genetics, Genomics and Breeding of Conifers. CRC Press, Science Publishers, Enfield, pp 196–238

    Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4(1):137–138

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  CAS  Google Scholar 

  • Rousset F (2008) GENEPOP 4.01: a complete re-implementation of the genepop software for windows and linux. Mol Ecol Resour 8(1):103–106

    Article  PubMed  Google Scholar 

  • Sato Y, Wuli B, Sederoff R, Whetten R (2001) Molecular cloning and expression of eight laccase cDNAs in loblolly pine [Pinus taeda (L.)]. J Plant Res 114:147–155

    Article  CAS  Google Scholar 

  • Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78(4):629–644

    Article  PubMed  CAS  Google Scholar 

  • Schmidtling RC (2007) Genetic variation in the southern pines: evolution, migration and adaptation following the Pleistocene. In: Kabrick JM, Dey DC, Gwaze D (eds) Shortleaf pine restoration and ecology in the Ozarks: Proceedings of a symposium; 2006 November 7–9; Springfield, MO. Gen. Tech. Rep. NRS-P-15. U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, pp 28–32

  • Schmidtling RC, Carroll E, LaFarge T (1999) Allozyme diversity of selected and natural loblolly pine populations. Silvae Genetica 48(1):35–45

    Google Scholar 

  • Sewell MM, Bassoni DL, Megraw RA, Wheeler NC, Neale DB (2000) Identification of QTLs influencing wood property traits in loblolly pine [Pinus taeda (L.)]: I. Physical wood properties. Theor Appl Genet 101:1273–1281

    Article  CAS  Google Scholar 

  • Sewell MM, Davis MF, Tuskan GA, Wheeler NC, Elam CC, Bassoni DL, Neale DB (2002) Identification of QTLs influencing wood property traits in loblolly pine [Pinus taeda (L.)]: II. Chemical wood properties. Theor Appl Genet 104:214–222

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS (2006) Comparative phylogeography of unglaciated eastern North America. Mol Ecol 15(14):4261–4293

    Article  PubMed  Google Scholar 

  • Soto-Cerda BJ, Cloutier S (2012) Association mapping in plant genomes. Chapter 3 in Genetic diversity in plants, Edited by Mahmut Çalişkan. InTech, pp. 29–54

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  PubMed  CAS  Google Scholar 

  • Storey JD (2002) A direct approach to false discovery rates. J Roy Stat Soc B 64:479–498

    Article  Google Scholar 

  • Stranger BE, Stahl EA, Raj T (2011) Progress and promise of genome-wide association studies for human complex trait genetics. Genetics 187:367–383

    Article  PubMed  CAS  Google Scholar 

  • Strobeck C (1987) Average number of nucleotide differences in a sample from a single subpopulation: a test for population subdivision. Genetics 117(1):149–153

    PubMed  CAS  Google Scholar 

  • Todd D, Pait J, Hodge J (1995) The impact and value of tree improvement in the south. In Proceedings of 23rd Southern Forest Tree Improvement Conference, Asheville, NC, June 20–22, 1995, pp 7–16. Southern Forest Tree Improvement Committee.

  • Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wegrzyn JL, Eckert AJ, Choi M, Lee JM, Stanton BJ, Sykes R, Davis MF, Tsai CJ, Neale DB (2010) Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa, Salicaceae) secondary xylem. New Phytol 188:515–532

    Article  PubMed  CAS  Google Scholar 

  • Williams CG (2009) Conifer reproductive biology. Springer ISBN 978-1-4020-9601-3

  • Williams CG, Savolainen O (1996) Inbreeding depression in conifers: implications for breeding strategy. Forest Sci 42(1):102–117

    Google Scholar 

  • Wright S (1978) Variability within and among natural populations, volume 4. University of Chicago Press, Chicago

    Google Scholar 

  • Xu S, Tauer CG, Nelson CD (2008) Genetic diversity within and among populations of shortleaf pine (Pinus echinata Mill.) and loblolly pine (Pinus taeda L.). Tree Genet Genomes 4:859–868

    Article  Google Scholar 

  • Zapata-Valenzuela J, Isik F, Maltecca C, Wegrzyn J, Neale D, McKeand S, Whetten R (2012) SNP markers trace familial linkages in a cloned population of Pinus taeda—prospects for genomic selection. Tree Genet Genomes 8(6):1307–1318

    Google Scholar 

Download references

Acknowledgments

We thank the members and staff of the Western Gulf Forest Tree Improvement Program, Texas Forest Service for their contribution of germplasm to this project, and the Genetics Graduate Program of Texas A&M University for the financial support of Vikram Chhatre. This work was supported by the National Science Foundation Plant Genome Research Program award #DBI-0501763 and the US Department of Agriculture National Institute of Food and Agriculture AFRI Applied Plant Genomics CAP award #2009-85606-05680. We also thank Dr. Ronald R. Sederoff (NC State University) for his comments, which greatly helped us improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin V. Krutovsky.

Additional information

Communicated by R. Sederoff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chhatre, V.E., Byram, T.D., Neale, D.B. et al. Genetic structure and association mapping of adaptive and selective traits in the east Texas loblolly pine (Pinus taeda L.) breeding populations. Tree Genetics & Genomes 9, 1161–1178 (2013). https://doi.org/10.1007/s11295-013-0624-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-013-0624-x

Keywords

Navigation