Skip to main content
Log in

Association mapping for growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Association mapping is a recommended method to dissect the genetic basis of naturally occurring trait variation in non-model tree species with outcrossing mating systems and large population sizes. We report here the results of the first association-mapping study in maritime pine (Pinus pinaster Ait.), a conifer species of economical importance for timber and pulp production in south-western Europe. Two association samples were examined: 160 plus trees belonging to the first generation breeding population (G0, resulting from mass selection for overall good growth and form in the forest of South West of France) and 162 trees from the second generation breeding population (G1, resulting from biparental crosses between G0 trees). These samples were (1) genotyped for 184 in vitro SNPs discovered in 40 candidate genes for plant cell wall formation or drought stress resistance and 200 in silico SNPs detected in 146 contigs from the maritime pine EST database and (2) phenotyped for growth, stem straightness and wood chemistry traits in progeny or clonal experimental designs (from 768 to 5,080 phenotypes depending on the trait). First, SNP data were used to test for putative stratification in the breeding population. Then, two different approaches using pedigree records to account for inbreeding were used to test for associations. Despite the a priori low power of the designs, we identified two mutations that were significantly associated, one with variation in growth (in a HD-Zip III transcription factor) and the other with variation in wood cellulose content (in a fasciclin-like arabinogalactan protein).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abecasis GR, Ghosh D, Nichols TE (2005) Linkage disequilibrium: ancient history drives the new genetics. Hum Hered 59(2):118–124. doi:10.1159/000085226

    Article  PubMed  Google Scholar 

  • Alazard P, Canteloup D, Crémière L, Daubet A, Lesgourgues T, Merzeau D, Pastuszka P, Raffin A (2005) Genetic breeding of the maritime pine in Aquitaine: an exemplary success story. Groupe Pin Maritime du Futur, Cestas

    Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  • Ball RD (2004) ldDesign: design of experiments for detection of linkage disequilibrium. Available at http://cran.r-project.org/web/packages/ldDesign/index.html

  • Ball RD (2005) Experimental designs for reliable detection of linkage disequilibrium in unstructured random population association studies. Genetics 170(2):859–873. doi:10.1534/genetics.103.024752

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu J, Doerksen T, Boyle B, Clément S, Deslauriers M, Beauseigle S, Blais S, Poulin PL, Lenz P, Caron S (2011) Association genetics of wood physical traits in the conifer white spruce and relationships with gene expression. Genetics 188(1):197. doi:10.1534/genetics.110.125781

    Article  PubMed  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635. doi:10.1093/bioinformatics/btm308

    Article  PubMed  CAS  Google Scholar 

  • Brown GR, Gill GP, Kuntz RJ, Langley CH, Neale DB (2004) Nucleotide diversity and linkage disequilibrium in loblolly pine. Proc Natl Acad Sci USA 101(42):15255–15260. doi:10.1073/pnas.0404231101

    Article  PubMed  CAS  Google Scholar 

  • Bucci G, González-Martínez SC, Le Provost G, Plomion C, Ribeiro MM, Sebastiani F, Alia R, Vendramin GG (2007) Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers. Mol Ecol 16(10):2137–2153. doi:10.1111/j.1365-294X.2007.03275.x

    Article  PubMed  CAS  Google Scholar 

  • Burban C, Petit RJ (2003) Phylogeography of maritime pine inferred with organelle markers having contrasted inheritance. Mol Ecol 12(6):1487–1495. doi:10.1046/j.1365-294X.2003.01817.x

    Article  PubMed  CAS  Google Scholar 

  • Canty A, Ripley B (2009) boot: Bootstrap R (S-Plus) functions. Available at http://cran.r-project.org/web/packages/boot/

  • Cardon LR, Bell JI (2001) Association study designs for complex diseases. Nat Rev Genet 2(2):91–99. doi:10.1038/35052543

    Article  PubMed  CAS  Google Scholar 

  • Casero PJ, Casimiro I, Knox JP (1998) Occurrence of cell surface arabinogalactan-protein and extensin epitopes in relation to pericycle and vascular tissue development in the root apex of four species. Planta 204(2):252–259. doi:10.1007/s004250050254

    Article  CAS  Google Scholar 

  • Charcosset A, Gallais A (1996) Estimation of the contribution of quantitative trait loci (QTL) to the variance of a quantitative trait by means of genetic markers. Theor Appl Genet 93(8):1193–1201. doi:10.1007/BF00223450

    Article  Google Scholar 

  • Cumbie WP, Eckert A, Wegrzyn J, Whetten R, Neale D, Goldfarb B (2011) Association genetics of carbon isotope discrimination, height and foliar nitrogen in a natural population of Pinus taeda L. Heredity. doi:10.1038/hdy.2010.168

  • Dabney A, Storey JD, Warnes GR (2009) qvalue: Q-value estimation for false discovery rate control. Available at http://CRAN.R-project.org/package=qvalue

  • Danjon F (1994) Stand features and height growth in a 36-year-old maritime pine (Pinus pinaster Ait) provenance test. Silvae Genet 43(1):52–62

    Google Scholar 

  • de-Lucas AI, Robledo-Arnuncio JJ, Hidalgo E, González-Martínez SC (2008) Mating system and pollen gene flow in Mediterranean maritime pine. Heredity 100(4):390–399. doi:10.1038/sj.hdy.6801090

    Article  PubMed  CAS  Google Scholar 

  • Demura T, Fukuda H (2007) Transcriptional regulation in wood formation. Trends Plant Sci 12(2):64–70. doi:10.1016/j.tplants.2006.12.006

    Article  PubMed  CAS  Google Scholar 

  • Derory J, Mariette S, Gonzalez-Martinez SC, Chagne D, Madur D, Gerber S, Brach J, Persyn F, Ribeiro MM, Plomion C (2002) What can nuclear microsatellites tell us about maritime pine genetic resources conservation and provenance certification strategies? Ann For Sci 59(5–6):699–708. doi:10.1051/forest:2002058

    Article  Google Scholar 

  • Dillon SK, Nolan M, Li W, Bell C, Wu HX, Southerton SG (2010) Allelic variation in cell wall candidate genes affecting solid wood properties in natural populations and land races of Pinus radiata. Genetics 185(4):1477. doi:10.1534/genetics.110.116582

    Article  PubMed  CAS  Google Scholar 

  • Eckert AJ, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky KV, St Clair JB, Neale DB (2009) Association genetics of coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics 182(4):1289. doi:10.1534/genetics.109.102350

    Article  PubMed  CAS  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13(20):1768–1774. doi:10.1016/j.cub.2003.09.035

    Article  PubMed  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14(8):2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  PubMed  CAS  Google Scholar 

  • Eveno E, Collada C, Guevara MA, Leger V, Soto A, Diaz L, Leger P, Gonzalez-Martinez SC, Cervera MT, Plomion C, Garnier-Gere PH (2008) Contrasting patterns of selection at Pinus pinaster Ait. drought stress candidate genes as revealed by genetic differentiation analyses. Mol Biol Evol 25(2):417–437. doi:10.1093/molbev/msm272

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, New York

    Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587

    PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7(4):574. doi:10.1111/j.1471-8286.2007.01758.x

    Article  PubMed  CAS  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374. doi:10.1146/annurev.arplant.54.031902.134907

    Article  PubMed  CAS  Google Scholar 

  • Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, Bertrand Y, Souquet JM, Cheynier V, This P (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp sativa) berry: a QTL to QTN integrated study. Genetics 183:1127–1139. doi:10.1534/genetics.109.103929

    Article  PubMed  CAS  Google Scholar 

  • Garnier-Gere P (1992) Contribution à l’étude de la variabilité génétique inter et intra-population chez le maïs (Zea mays L.): valorisation d’informations agromorphologiques et enzymatiques. Institut National Agronomique Paris-Grignon, Paris-Grignon

  • Gaspar MJ, de-Lucas AI, Alía R, Almiro Pinto Paiva J, Hidalgo E, Louzada J, Almeida H, González-Martínez SC (2009) Use of molecular markers for estimating breeding parameters: a case study in a Pinus pinaster Ait. progeny trial. Tree Genet Genom 5:609–616. doi:10.1007/s11295-009-0213-1

    Article  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2006) ASReml user guide release 2.0. VSN International Ltd., Hemel Hempstead

  • Gilmour AR, Thompson R, Cullis BR (1995) Average information REML: an efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51(4):1440–1450

    Article  Google Scholar 

  • Gion JM, Lalanne C, Le Provost G, Ferry-Dumazet H, Paiva J, Chaumeil P, Frigerio JM, Brach J, Barre A, de Daruvar A, Claverol S, Bonneu M, Sommerer N, Negroni L, Plomion C (2005) The proteome of maritime pine wood forming tissue. Proteomics 5(14):3731–3751. doi:10.1002/pmic.200401197

    Article  PubMed  CAS  Google Scholar 

  • González-Martínez SC, Alia R, Gil L (2002) Population genetic structure in a Mediterranean pine (Pinus pinaster Ait.): a comparison of allozyme markers and quantitative traits. Heredity 89:199–206. doi:10.1038/sj.hdy.6800114

    Article  PubMed  Google Scholar 

  • González-Martínez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006) DNA sequence variation and selection of tag single-nucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 172(3):1915–1926. doi:10.1534/genetics.105.047126

    Article  PubMed  Google Scholar 

  • González-Martínez SC, Gerber S, Cervera MT, Martínez-Zapater JM, Alía R, Gil L (2003) Selfing and sibship structure in a two-cohort stand of maritime pine (Pinus pinaster Ait.) using nuclear SSR markers. Ann For Sci 60(2):115–121. doi:10.1051/forest:2003003

    Article  Google Scholar 

  • González-Martínez SC, Huber D, Ersoz E, Davis JM, Neale DB (2008) Association genetics in Pinus taeda L. II. Carbon isotope discrimination. Heredity 101(1):19–26. doi:10.1038/hdy.2008.21

    Article  PubMed  Google Scholar 

  • González-Martínez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB (2007) Association genetics in Pinus taeda L. I. Wood property traits. Genetics 175(1):399–409

    Article  PubMed  Google Scholar 

  • Gonzalez JR, Armengol L, Sole X, Guino E, Mercader JM, Estivill X, Moreno V (2007) SNPassoc: an R package to perform whole genome association studies. Bioinformatics 23(5):654–655. doi:10.1093/bioinformatics/btm025

    Article  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57(4):461–485. doi:10.1007/s11103-005-0257-z

    Article  PubMed  CAS  Google Scholar 

  • Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31(2):423–447

    Article  PubMed  CAS  Google Scholar 

  • Heuertz M, De Paoli E, Kallman T, Larsson H, Jurman I, Morgante M, Lascoux M, Gyllenstrand N (2006) Multilocus patterns of nucleotide diversity, linkage disequilibrium and demographic history of Norway spruce [Picea abies (L.) Karst]. Genetics 174(4):2095–2105. doi:10.1534/genetics.106.065102

    Article  PubMed  CAS  Google Scholar 

  • Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6(2):95–108. doi:10.1038/nrg1521

    Article  PubMed  CAS  Google Scholar 

  • Holliday JA, Ritland K, Aitken SN (2010) Widespread, ecologically relevant genetic markers developed from association mapping of climate related traits in Sitka spruce (Picea sitchensis). New Phytol. doi:10.1111/j.1469-8137.2010.03380.x

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9(5):1322–1332. doi:10.1111/j.1755-0998.2009.02591.x

    Article  PubMed  Google Scholar 

  • Ingvarsson PK, Garcia MV, Luquez V, Hall D, Jansson S (2008) Nucleotide polymorphism and phenotypic associations within and around the phytochrome B2 locus in European aspen (Populus tremula, Salicaceae). Genetics 178(4):2217–2226. doi:10.1534/genetics.107.082354

    Article  PubMed  CAS  Google Scholar 

  • Johnson KL, Jones BJ, Bacic A, Schultz CJ (2003) The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. Plant Physiol 133(4):1911–1925. doi:10.1104/pp.103.031237

    Article  PubMed  CAS  Google Scholar 

  • Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MCP (2004) microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428(6978):84–88. doi:10.1038/nature02363

    Article  PubMed  CAS  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178(3):1709–1723. doi:10.1534/genetics.107.080101

    Article  PubMed  Google Scholar 

  • Ko JH, Prassinos C, Han KH (2006) Developmental and seasonal expression of PtaHB1, a Populus gene encoding a class IIIHD-Zip protein, is closely associated with secondary growth and inversely correlated with the level of microRNA (miR166). New Phytol 169(3):469–478. doi:10.1111/j.1469-8137.2005.01623.x

    Article  PubMed  CAS  Google Scholar 

  • Lafarguette F, Leple J-C, Dejardin A, Laurans F, Costa G, Lesage-Descauses M-C, Pilate G (2004) Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol 164(1):107–121. doi:10.1111 /j.1469-8137.2004.01175.x

    Article  CAS  Google Scholar 

  • Ledig FT (1998) Genetic variation in Pinus. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 251–280

    Google Scholar 

  • Lepoittevin C, Frigerio J-M, Garnier-Géré P, Salin F, Cervera MT, Vornam B, Harvengt L, Plomion C (2010) In vitro vs in silico detected SNPs for the development of a genotyping array: what can we learn from a non-model species? PLoS ONE 5(6):e11034. doi:10.1371/journal.pone.0011034

    Article  PubMed  Google Scholar 

  • Lepoittevin C, Rousseau J-P, Guillemin A, Gauvrit C, Besson F, Hubert F, Da Silva Perez D, Harvengt L, Plomion C (2011) Genetic parameters of growth, straightness and wood-chemistry traits in Pinus pinaster. Ann For Sci 68:873–884. doi:10.1007/s13595-011-0084-0

    Article  Google Scholar 

  • Li X, Wu H, Dillon S, Southerton S (2009) Generation and analysis of expressed sequence tags from six developing xylem libraries in Pinus radiata D. Don. BMC Genomics 10(1):41. doi:10.1186/1471-2164-10-41

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Tu L, Li Y, Wang L, Zhu L, Zhang X (2008) Genes encoding fasciclin-like arabinogalactan proteins are specifically expressed during cotton fiber development. Plant Mol Biol Rep 26(2):98–113. doi:10.1007/s11105-008-0026-7

    Article  Google Scholar 

  • Long AD, Langley CH (1999) The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res 9(8):720–731. doi:10.1101/gr.9.8.720

    PubMed  CAS  Google Scholar 

  • Ma XF, Hall D, Onge KR, Jansson S, Ingvarsson PK (2010) Genetic differentiation, clinal variation and phenotypic associations with growth cessation across the Populus tremula photoperiodic pathway. Genetics 186:1033–1044. doi:10.1534/genetics.110.120873

    Article  PubMed  CAS  Google Scholar 

  • Malosetti M, van der Linden CG, Vosman B, van Eeuwijk FA (2007) A mixed-model approach to association mapping using pedigree information with an illustration of resistance to Phytophthora infestans in potato. Genetics 175(2):879–889. doi:10.1534/genetics.105.054932

    Article  PubMed  CAS  Google Scholar 

  • Marchini J, Cardon LR, Phillips MS, Donnelly P (2004) The effects of human population structure on large genetic association studies. Nat Genet 36(5):512–517. doi:10.1038/ng1337

    Article  PubMed  CAS  Google Scholar 

  • Mariette S, Chagne D, Lezier C, Pastuszka P, Baffin A, Plomion C, Kremer A (2001) Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers. Heredity 86:469–479. doi:10.1046/j.1365-2540.2001.00852.x

    Article  PubMed  CAS  Google Scholar 

  • McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411(6838):709–713. doi:10.1038/35079635

    Article  PubMed  CAS  Google Scholar 

  • Namroud M-C, Guillet-Claude C, Mackay J, Isabel N, Bousquet J (2010) Molecular evolution of regulatory genes in spruces from different species and continents: heterogeneous patterns of linkage disequilibrium and selection but correlated recent demographic changes. J Mol Evol 70(4):371–386. doi:10.1007/s00239-010-9335-1

    Article  PubMed  CAS  Google Scholar 

  • Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9(7):325–330. doi:10.1016/j.tplants.2004.05.006

    Article  PubMed  CAS  Google Scholar 

  • No EG, Loopstra CA (2000) Hormonal and developmental regulation of two arabinogalactan-proteins in xylem of loblolly pine (Pinus taeda). Physiol Plant 110(4):524–529. doi:10.1111/j.1399-3054.2000.1100415.x

    Article  CAS  Google Scholar 

  • Ohashi-Ito K, Fukuda H (2003) HD-Zip III homeobox genes that include a novel member, ZeHB-13 (Zinnia)/ATHB-15 (Arabidopsis), are involved in procambium and xylem cell differentiation. Plant Cell Physiol 44(12):1350–1358. doi:10.1093/pcp/pcg164

    Article  PubMed  CAS  Google Scholar 

  • Ohashi-Ito K, Kubo M, Demura T, Fukuda H (2005) Class III homeodomain leucine-zipper proteins regulate xylem cell differentiation. Plant Cell Physiol 46(10):1646–1656. doi:10.1093/pcp/pci180

    Article  PubMed  CAS  Google Scholar 

  • Paiva JAP, Garnier-Gere PH, Rodrigues JC, Alves A, Santos S, Graca J, Le Provost G, Chaumeil P, Da Silva-Perez D, Bosc A (2008) Plasticity of maritime pine (Pinus pinaster) wood-forming tissues during a growing season. New Phytol 179(4):1180–1194. doi:10.1111/j.1469-8137.2008.02536.x

    Article  Google Scholar 

  • Pot D, McMillan L, Echt C, Le Provost G, Garnier-Gere P, Cato S, Plomion C (2005) Nucleotide variation in genes involved in wood formation in two pine species. New Phytol 167(1):101–112. doi:10.1111/j.1469-8137.2005.01417.x

    Article  PubMed  CAS  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38(8):904–909. doi:10.1038/ng1847

    Article  PubMed  CAS  Google Scholar 

  • Price AL, Zaitlen NA, Reich D, Patterson N (2010) New approaches to population stratification in genome-wide association studies. Nat Rev Genet 11(7):459–463. doi:10.1038/nrg2813

    Article  PubMed  CAS  Google Scholar 

  • Prigge MJ, Clark SE (2006) Evolution of the class III HD-Zip gene family in land plants. Evol Dev 8(4):350–361. doi:10.1111/j.1525-142X.2006.00107.x

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000a) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000b) Association mapping in structured populations. Am J Hum Genet 67(1):170–181. doi:10.1086/302959

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Wen X, Falush D (2007) Documentation for structure software: version 2.2. Available at http://pritch.bsd.uchicago.edu/software

  • Pyhäjärvi T, Garcia-Gil MR, Knurr T, Mikkonen M, Wachowiak W, Savolainen O (2007) Demographic history has influenced nucleotide diversity in European Pinus sylvestris populations. Genetics 177(3):1713–1724. doi:10.1534/genetics.107.077099

    Article  PubMed  Google Scholar 

  • Pyhäjärvi T, Kujala S, Savolainen O (2011) Revisiting protein heterozygosity in plants—nucleotide diversity in allozyme coding genes of conifer Pinus sylvestris. Tree Genet Genom 7:385–397. doi:10.1007/s11295-010-0340-8

    Article  Google Scholar 

  • Quesada T, Gopal V, Cumbie WP, Eckert AJ, Wegrzyn JL, Neale DB, Goldfarb B, Huber DA, Casella G, Davis JM (2010) Association mapping of quantitative disease resistance in a natural population of loblolly pine (Pinus taeda L.). Genetics 186(2):677. doi:10.1534/genetics.110.117549

    Article  PubMed  CAS  Google Scholar 

  • R_Development_Core_Team (2009) R: a language and environment for statistical computing. Available at http://www.R-project.org

  • Raymond M, Rousset F (1995) Genepop (version-1.2)—population-genetics software for exact tests and ecumenicism. J Hered 86(3):248–249

    Google Scholar 

  • Ribeiro MM, Mariette S, Vendramin GG, Szmidt AE, Plomion C, Kremer A (2002) Comparison of genetic diversity estimates within and among populations of maritime pine using chloroplast simple-sequence repeat and amplified fragment length polymorphism data. Mol Ecol 11(5):869–877. doi:10.1046/j.1365-294X.2002.01490.x

    Article  PubMed  CAS  Google Scholar 

  • Rinaldo A, Bacanu SA, Devlin B, Sonpar V, Wasserman L, Roeder K (2005) Characterization of multilocus linkage disequilibrium. Genet Epidemiol 28(3):193–206. doi:10.1002/gepi.20056

    Article  PubMed  Google Scholar 

  • Savolainen O, Pyhäjärvi T (2007) Genomic diversity in forest trees. Curr Opin Plant Biol 10(2):162–167. doi:10.1016/j.pbi.2007.01.011

    Article  PubMed  CAS  Google Scholar 

  • Sessa G, Morelli G, Ruberti I (1993) The Athb-1 and Athb-2 Hd-Zip domains homodimerize forming complexes of different DNA-binding specificities. EMBO J 12(9):3507–3517

    PubMed  CAS  Google Scholar 

  • Sillanpää MJ (2011) Overview of techniques to account for confounding due to population stratification and cryptic relatedness in genomic data association analyses. Heredity 106:511–519. doi:10.1038/hdy.2010.91

    Article  PubMed  Google Scholar 

  • Stephens M, Balding DJ (2009) Bayesian statistical methods for genetic association studies. Nat Rev Genet 10(10):681–690. doi:10.1038/nrg2615

    Article  PubMed  CAS  Google Scholar 

  • Stich B, Melchinger AE (2009) Comparison of mixed-model approaches for association mapping in rapeseed, potato, sugar beet, maize, and Arabidopsis. BMC Genomics 10(1):94. doi:10.1186/1471-2164-10-94

    Article  PubMed  Google Scholar 

  • Stich B, Mohring J, Piepho HP, Heckenberger M, Buckler ES, Melchinger AE (2008) Comparison of mixed-model approaches for association mapping. Genetics 178(3):1745. doi:10.1534/genetics.107.079707

    Article  PubMed  Google Scholar 

  • Storey JD (2002) A direct approach to false discovery rates. J Roy Stat Soc Ser B (Stat Method) 64:479–498

    Article  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100(16):9440–9445. doi:10.1073/pnas.1530509100

    Article  PubMed  CAS  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Thumma BR, Matheson BA, Zhang D, Meeske C, Meder R, Downes GM, Southerton SG (2009) Identification of a cis-acting regulatory polymorphism in a eucalypt Cobra-like gene affecting cellulose content. Genetics 183:1153–1164. doi:10.1534/genetics.109.106591

    Article  PubMed  CAS  Google Scholar 

  • Thumma BR, Nolan MR, Evans R, Moran GF (2005) Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 171(3):1257–1265. doi:10.1534/genetics.105.042028

    Article  PubMed  CAS  Google Scholar 

  • Voight BF, Pritchard JK (2005) Confounding from cryptic relatedness in case–control association studies. PLoS Genet 1(3):302–311. doi:10.1371/journal.pgen.0010032

    Article  CAS  Google Scholar 

  • Wang WYS, Barratt BJ, Clayton DG, Todd JA (2005) Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 6(2):109–118. doi:10.1038/nrg1522

    Article  PubMed  CAS  Google Scholar 

  • Weiss LA, Arking DE (2009) A genome-wide linkage and association scan reveals novel loci for autism. Nature 461(7265):802–808. doi:10.1038/nature08490

    Article  PubMed  CAS  Google Scholar 

  • Whetten R, Sun Y-H, Zhang Y, Sederoff R (2001) Functional genomics and cell wall biosynthesis in loblolly pine. Plant Mol Biol 47(1):275–291. doi:10.1023/A:1010652003395

    Article  PubMed  CAS  Google Scholar 

  • Williams E, Piepho HP, Whitaker D (2011) Augmented p-rep designs. Biom J 53(1):19–27. doi:10.1002/bimj.201000102

    Article  PubMed  Google Scholar 

  • Wu B, Liu N, Zhao H (2006) PSMIX: an R package for population structure inference via maximum likelihood method. BMC Bioinforma 7(1):317. doi:10.1186/1471-2105-7-317

    Article  Google Scholar 

  • Xiong M, Guo S-W (1997) Fine-scale genetic mapping based on linkage disequilibrium: theory and applications. Am J Hum Genet 60(6):1513–1531. doi:10.1086/515475

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Cui J, Chazaro I, Cupples LA, Demissie S (2005) Power and type I error rate of false discovery rate approaches in genome-wide association studies. BMC Genet 6(Suppl 1):S134

    Article  PubMed  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38(2):203–208. doi:10.1038/ng1702

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Brown G, Whetten R, Loopstra CA, Neale D, Kieliszewski MJ, Sederoff RR (2003) An arabinogalactan protein associated with secondary cell wall formation in differentiating xylem of loblolly pine. Plant Mol Biol 52(1):91–102. doi:10.1023/A:1023978210001

    Article  PubMed  Google Scholar 

  • Zhang Y, Sederoff RR, Allona I (2000) Differential expression of genes encoding cell wall proteins in vascular tissues from vertical and bent loblolly pine trees. Tree Physiol 20(7):457–466. doi:10.1093/treephys/20.7.457

    PubMed  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3(1):e4. doi:10.1371/journal.pgen.0030004

    Article  PubMed  Google Scholar 

  • Zhong R, Ye Z-H (2004) Amphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant Cell Physiol 45(4):369–385. doi:10.1093/pcp/pch051

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from Agence Nationale de la Recherche: Genoplante (GenoQB, GNP05013C), Agence Nationale de la Recherche ‘Plates-Formes Technologiques du Vivant’ (BOOST-SNP, 07PFTV002), the Aquitaine Region (20061201004PFM), the European Union (NOVELTREE project, FP7-211868) and the EVOLTREE Network of Excellence (contract number 016322). C. Lepoittevin was supported by CIFRE contract between FCBA and INRA. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Lepoittevin.

Additional information

Communicated by S. Aitken

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

Geographic origin of the G0 trees (table of coordinates and map) (PDF 315 kb)

Online resource 2

Results of the Structure analysis on the 160 G0 samples (a, b) and on the 28 unrelated G1 samples (c, d). a, c Mean likelihood L(K) and its standard error over 10 runs of the Structure software for each number of subpopulations K. b, d Evanno criterion ∆K for each K value (the y-scale is chosen for the criteria to be informative as in Evanno et al. 2005) (PDF 105 kb)

Online resource 3

Hierarchical clustering dendrograms obtained by the H-clust method (Rinaldo et al. 2005) for the 160 G0 samples (a) and the 28 unrelated G1 samples (b). The cut-off value is indicated by a dashed line and the informative SNPs by a star. In each block, the selected SNP is chosen as the SNP most correlated with all the other SNPs in the block. If several SNPs are equivalent, the one showing the lower number of missing data is selected (PDF 396 kb)

Online resource 4

P values, q values and P′ values for the SNP effect in the additive model, for 141 informative SNPs in the G0 samples (list of SNPs and values of test statistics available in Online resource 5) (JPEG 1562 kb)

High resolution (EPS 116 kb)

Online resource 5

Table of P values, q values, P′ values and heritabilities for the association tests in the G0 and G1 populations (XLS 319 kb)

Online resource 6

Distribution of P values for the codominant (a) and additive (b) models for Diameter in the G1 sample. a There is no plateau in the distribution, thus the proportion of null P values cannot be estimated by the empirical method (Storey and Tibshirani 2003) and the ad hoc estimation produces very low q values (see Fig. 4). b There is a plateau in the distribution that allows estimating the proportion of null P values, which is close to 0.5 (PDF 7 kb)

Online resource 7

Power of single-marker-based association tests as a function of SNP minor allele frequency and heritability, for a 10−5 alpha threshold and a sample size of 1,000 (a) or 160 (b) individuals. Power was calculated using the ldDesign package (Ball 2004), assuming that the SNP considered was the causative mutation (implemented in the ldDesign package by setting the linkage disequilibrium D value to its maximum) and that the genotypic frequencies followed Hardy–Weinberg equilibrium (PDF 139 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lepoittevin, C., Harvengt, L., Plomion, C. et al. Association mapping for growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population. Tree Genetics & Genomes 8, 113–126 (2012). https://doi.org/10.1007/s11295-011-0426-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0426-y

Keywords

Navigation