Skip to main content
Log in

The role of Schmidt ‘Antonovka’ in apple scab resistance breeding

  • Review
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

‘Antonovka’ has long been recognised as a major source of scab (Venturia inaequalis) resistance useful for apple breeding worldwide. Both major gene resistances in the form of the Rvi10 and Rvi17 and quantitative resistance, collectively identified as VA, have been identified in different accessions of ‘Antonovka’. Most of the ‘Antonovka’ scab resistance used in apple-breeding programmes around the world can be traced back to Schmidt ‘Antonovka’ and predominantly its B VIII progenies 33,25 (PI 172623), 34,6 (PI 172633), 33,8 (PI 172612) and 34,5 (PI 172632). Using genetic profile reconstruction, we have identified “common ‘Antonovka’ ” as the progenitor of the B VIII family, which is consistent with it having been a commercial cultivar in Poland and the single source of scab resistance used by Dr. Martin Schmidt. The major ‘Antonovka’ scab resistance genes mapped to date are located either very close to Rvi6, or about 20–25 cM above it, but their identities need further elucidation. The presence of the 139 bp allele of the CH-Vf1 microsatellite marker known to be associated with Rvi17 (Va1) in most of the ‘Antonovka’ germplasm used in breeding suggests that it plays a central role in the resistance. The nature and the genetic relationships of the scab resistance in these accessions as well as a number of apple cultivars derived from ‘Antonovka’, such as, ‘Freedom’, ‘Burgundy’ and ‘Angold’, are discussed. The parentage of ‘Reglindis’ is unclear, but the cultivar commercialised as ‘Reglindis’ was confirmed to be an Rvi6 cultivar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aderhold R (1902) Ein Beitrag zur Frage der Empfänglichkeit der Apfelsorten für Fusicladium dendriticum (Wallr.) Fuck. und deren Beziehungen zum Wetter. Arbeiten Biol Abteil Land- und Forstwirtschaft 2:560–566

    Google Scholar 

  • Alderman DC, Lantz HL (1939) Apple breeding: inheritance and statistical studies on the fruits of cross-breeding seedlings with Antonovka parentage. Proc Am Soc Hortic Sci 36:279–283

    Google Scholar 

  • Anonymous (1949) Plant inventory no. 157–159. USDA, Plant Industry Station, Beltsville, MD

  • Arche Noah, http://www.arche-noah.at/etomite/assets/downloads/Bibliothek/Obstsortenblaetter/Apfel

  • Bachareva AN, Gorschkova IS, Fetisova GG, Jakovleva PN (1949) Michurin Ivan Vladimirovich, Itogi Schestidesyatiletnich Rabot, Gosudarstvennoye isdatelstvo selskochosyaistvennoj literatury, Moscow, 168 pp

  • Bénaouf G, Parisi L (2000) Genetics of host–pathogen relationships between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology 90:236–242

    Article  PubMed  Google Scholar 

  • Bengtsson M, Lindhard H, Grauslund J (2000) Occurrence of races of Venturia inaequalis in an apple scab race screening orchard in Denmark. IOBC WPRS Bull 23(12):225–229

    Google Scholar 

  • Blažek J (1996) New apple cultivar ‘Angold’. Věd Práce Ovoc 15:143–148

    Google Scholar 

  • Blažek J (2000) Relationship between scab resistance and selected characters in 10 apple progenies. Acta Horticult 522:61–70

    Google Scholar 

  • Blažek J (2004) Response to diseases in new apple cultivars from the Czech republic. J Fruit Ornam Plant Res 12:241–250

    Google Scholar 

  • Blommers L (1983) Apple scab in mixed stands: varietal susceptibility and field resistance. IOBC WPRS Bull 6(4):67–76

    Google Scholar 

  • Boudichevskaia A, Flachowsky H, Dunemann F (2009a) Identification and molecular characterization of Vf-like candidate genes in cultivated apples and selections from Malus sieversii. Acta Horticult 814:747–752

    CAS  Google Scholar 

  • Boudichevskaia A, Flachowsky H, Dunemann F (2009b) Identification and molecular analysis of candidate genes homologous to HcrVf genes for scab resistance in apple. Plant Breeding 128:84–91

    Article  CAS  Google Scholar 

  • Brauns M (1962) Untersuchungen über die Resistenz der Sorte Antonowka und ihrer resistenten Nachkommen gegen den Erreger des Apfelschorfes. Züchter 32:297–304

    Google Scholar 

  • Broggini GAL, Bus VGM, Parravicini G, Kumar S, Groenwold R, Gessler C (2011) Genetic mapping of 14 avirulence gene in an EU-B04 × 1639 progeny of Venturia inaequalis. Fungal Genet Biol 48:166–176

    Article  PubMed  CAS  Google Scholar 

  • Bus VGM, Rikkerink EHA, Caffier V, Durel C-E, Plummer KM (2011) Revision of the nomenclature of the differential host–pathogen interactions of Venturia inaequalis and Malus. Annu Rev Phytopathol 49:391–433

    Article  PubMed  CAS  Google Scholar 

  • Calenge F, Faure A, Goerre M, Gebhardt C, van de Weg WE, Parisi L, Durel CE (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379

    Article  PubMed  CAS  Google Scholar 

  • Černenko SF (1946) Apple breeding in connection with the choice of initial forms. Plant Breed Abstr 17:470

    Google Scholar 

  • Chevalier M, Laurens F, Filmond R (2004) Macroscopic and microscopic studies of some apple cultivars inoculated with several races of Venturia inaequalis. Acta Horticult 663:239–242

    Google Scholar 

  • Cimanowski J, Dzięcioł W, Kowalik B (1988) Evaluation of susceptibility of 22 apple varieties to apple scab (Venturia inaequalis (Cooke) Aderh) and powdery mildew (Podosphaera leucotricha (Ell et Ev) Salm). Fruit Sci Rep 15(2):81–84

    Google Scholar 

  • Dayton DF, Williams EB (1968) Independent genes in Malus for resistance to Venturia inaequalis. Proc Am Soc Hortic Sci 92:89–94

    Google Scholar 

  • Dunemann F, Egerer J (2010) A major resistance gene from Russian apple ‘Antonovka’ conferring field immunity against apple scab is closely linked to the Rvi6 locus. Tree Genet Genom 6:627–633

    Article  Google Scholar 

  • Durel CE, Parisi L, Laurens F, van de Weg WE, Liebhard R, Jourjon MF (2003) Genetic dissection of partial resistance to race 6 of Venturia inaequalis in apple. Genome 46:224–234

    Article  PubMed  CAS  Google Scholar 

  • Evans KM, Patocchi A, Rezzonico F, Mathis F, Durel CE, Fenández-Fernández F, Boudichevskaia A, Dunemann F, Stankiewicz-Kosyl M, Gianfranceschi L, Komjanc M, Lateur M, Madduri M, Noordijk Y, van de Weg WE (2010) Genotyping of pedigreed apple breeding material with a genome-covering set of SSRs: trueness-to-type of cultivars and their parentages. Mol Breed. doi:10.1007/s11032-010-9502-5

  • Fischer C (1989a) Untersuchungen zur Vererbung der Resistenz gegen Schorf (Venturia inaeqaulis (Cooke) Aderh.) in Apfel-Nachkommenschaften. Arch Gartenbau 37:23–30

    Google Scholar 

  • Fischer M (1989b) Ergebnisse der Obstzüchtung in der DDR unter besonderer Berücksichtigung der Resistenzzüchtung. Mitt. Klosterneuburg Rebe und Wein. Obstbau und Früchtverwertung 39:62–69

    Google Scholar 

  • Fischer C (1994a) Nutzung von Malus-Wildarten und Kultursorten in der Resistenzzüchtung beim Apfel. Vortr Pflanzenzüchtung 27:38–50

    Google Scholar 

  • Fischer M (1994b) Langjähriger Aufbau und umfassende Evaluierung der Obstsortimente—Grundlage für die Pillnitzer Züchtungserfolge der Gegenwart. Vortr Pflanzenzüchtung 27:16–20

    Google Scholar 

  • Fischer C (1996) Schorfresistenzzüchtung beim Apfel—Ergebnisse und Strategie zur Stabilität der Resistenz. Erwerbsobstbau 38:71–76

    Google Scholar 

  • Fischer C (2000) Apple breeding in the Federal Centre for Plant Breeding Research, Institute for Fruit Breeding at Dresden-Pillnitz, Germany. Acta Horticult 538:225–227

    Google Scholar 

  • Fischer C (2005) Reglindis. In: Friedrich G, Petzold H (eds) Handbuch Obstsorten. Eugen Ulmer KG, Stuttgart, pp 130–131

    Google Scholar 

  • Fischer M, Dunemann F (2000) Search for polygenic scab and mildew resistance in apple varieties cultivated at the Fruit Genebank Dresden-Pillnitz. Acta Horticult 538:71–77

    Google Scholar 

  • Fischer C, Fischer M (1996) Results in apple breeding at Dresden-Pillnitz—Review. Gartenbauwissenschaft 61:139–146

    Google Scholar 

  • Fischer C, Pätzold G, Gerber J, Schaeffer H-J (1990) ‘Remo’ und ‘Reglindis’—die ersten Mostapfelsorten mit Mehrfachresistenz aus Pillnitz. Gartenbau 37:297–299

    Google Scholar 

  • Fischer C, Bondarenko A, Artamonova E (1994a) Results on the stability of scab resistance in apple breeding. In: Schmidt H, Kellerhals M (eds) Progress in temperate fruit breeding. Kluwer AcademicDordrecht, pp 81–85

  • Fischer C, Bukartschuk VF, Artamonova E, Biwol T (1994b) Genetische Analyse der Resistenzmerkmale Schorf und Mehltau in diallelen Kreuzungsnachkommenschaften beim Apfel. Vortr Pflanzenzüchtung 27:71–74

    Google Scholar 

  • Fischer C, Büttner R, Fischer M, Schreiber H (1998) Results of scab resistance durability of new resistant cultivars within the apple breeding programmes. Beiträge Züchtungsforsch 4(1):50–52

    Google Scholar 

  • Fischer C, Schreiber H, Büttner R, Fischer M (1999) Testing scab-resistance stability of new resistant cultivars within the apple breeding programme. Acta Horticult 484:449–454

    Google Scholar 

  • Fischer C, Dierend W, Fischer M, Bier-Kamotzke A (2000) Stabilität der Schorfresistenz an Apfel—Neue Ergebnisse, Probleme und Chancen ihrer Erhaltung. Erwerbsobstbau 42:73–82

    Google Scholar 

  • Flor HH (1956) The complementary genic systems in flax and flax rust. Adv Genet 8:29–54

    Article  Google Scholar 

  • Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Critical Rev Plant Sci 25:473–503

    Article  CAS  Google Scholar 

  • Gianfranceschi L, Soglio H (2004) The European project HiDRAS: innovative multidisciplinary approaches to breeding high quality disease resistant apples. Acta Horticult 663:327–330

    Google Scholar 

  • Granhall I (1953) Kan äppelskorven bemästras genom växtförädling? Sverig Pomol Foren Arsskr 54:17–28

    Google Scholar 

  • Hampson CR, Quamme HA, Sholberg PL (2009) A study of scab resistance in 16 apple progenies using parents with partial scab resistance. Can J Plant Sci 89:693–699

    Article  Google Scholar 

  • Hemmat M, Brown SK, Aldwinckle HS, Mehlenbacher SA, Weeden NF (2003) Identification and mapping of markers for resistance to apple scab from ‘Antonovka’ and ‘Hansen’s baccata #2’. Acta Horticult 622:153–161

    CAS  Google Scholar 

  • Hough LF, Williams EB, Dayton DF, Shay JR, Bailey CH, Mowry JB, Janick J, Emerson FH (1971) Progress and problems in breeding apples for scab resistance. Proc Tree Fruit Breed Symp Eucarpia Fruit Section. INRA, Angers, 14–18 September 1970, pp 217–230

  • Jakovlev PN (1949) I.V. Mičurin, a great scientist, biologist and reformer of nature. Plant Breed Abstr 19:624–625

    Google Scholar 

  • Julien JB, Spangelo LPS (1957) Physiological races of Venturia inaequalis. Can J Plant Sci 37:102–107

    Article  Google Scholar 

  • Kellerhals M, Furrer B (1994) Approaches for breeding apples with durable resistance. Euphytica 77:31–35

    Article  Google Scholar 

  • King GJ, Tartarini S, Brown L, Gennari F, Sansavini S (1999) Introgression of the Vf source of scab resistance and distribution of linked marker alleles within the Malus gene pool. Theor Appl Genet 99:1039–1046

    Article  CAS  Google Scholar 

  • Kozlovskaya ZA, Kurdyuk TP, Marudo GM (1999) Selection for resistance to fungal diseases in apple. Acta Horticult 484:513–517

    Google Scholar 

  • Krümmel H, Groh W, Friedrich G (1956) Deutsche Obstsorten. Deutscher Bauernverlag, Berlin, p 52

    Google Scholar 

  • Lamb RC, Aldwinckle HS, Terry DE (1985) ‘Freedom’, a disease-resistant apple. HortSci 20:774–775

    Google Scholar 

  • Lateur M, Populer C (1996) Évaluation de variétés anciennes de pommier pour la résistance à la tavelure Venturia inaequalis (Cke.) Wint. In: Lespinasse Y, Bergougnoux F (eds) Proc 10ème Colloque sur les Recherches Fruitières—Maladies des Arbres Fruitiers et Résistance Variétale. INRA/Ctfil, Angers, pp 171–180

    Google Scholar 

  • Lateur M, Wagemans C, Populer C (1999) Evaluation of fruit tree genetic resources as sources of polygenic scab resistance in an apple breeding programme. Acta Horticult 484:35–42

    Google Scholar 

  • Laurens F, Chevalier M, Dolega E, Gennari F, Goerre M, Fischer C, Kellerhals M, Lateur M, Lefrancq B, Parisi L, Schouten HJ, Tartarini S (2004) Local European cultivars as sources of durable scab resistance in apple. Acta Horticult 663:115–121

    Google Scholar 

  • Lespinasse Y (1989) Breeding pome fruits with stable resistance to disease: genes, resistance mechanisms, present work and prospects. IOBC WPRS Bull 12(6):100–115

    Google Scholar 

  • Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M, King GJ (1998) Alingning male and female linkage maps of apple (Malus pumila Mill) using multi-allelic markers. Theor Appl Genet 97:60–73

    Article  CAS  Google Scholar 

  • Manganaris AG, Alston FH, Weeden NF, Aldwinckle HS, Gustafson HL, Brown SK (1994) Isozyme locus Pgm-1 is tightly linked to a gene Vf for scab resistance in apple. J Am Soc Hortic Sci 119:1286–1288

    CAS  Google Scholar 

  • Mattisson H, Nybom H (2005) Application of DNA markers for detection of scab resistant apple cultivars and selections. Int J Hortic Sci 11(3):59–63

    Google Scholar 

  • McCrory SA, Shay JR (1951) Apple scab resistance survey of South Dakota apple varieties and breeding stocks. Plant Dis Rep 35:433–434

    Google Scholar 

  • Michurin IV (1949) Selected Works. Foreign Languages Publishing House, Moscow, p 496

    Google Scholar 

  • Morgan J, Richards A (1993) The book of apples. Ebury Press, London, p 304

    Google Scholar 

  • Olivier JM, Lespinasse Y (1982) Résistance du pommier a la tavelure Venturia inaequalis (Cke.) Wint.: sources de résistance, comportement du parasite, programme de sélection. Cryptog Mycol 3:361–375

    Google Scholar 

  • Pancaldi M, Sansavini S, Ventura M, Zuccherelli S, Quadretti R (1996) Linkage between Va and PGM-1 genes in ‘Antonovka’ apple progenies resistant to scab. In: Lespinasse Y, Bergougnoux F (eds) Proc 10ème Colloque sur les Recherches Fruitières—Maladies des Arbres Fruitiers et Résistance Variétale. INRA/Ctfil Angers, France, pp 191–195

    Google Scholar 

  • Parisi L, Lespinasse Y (1996) Pathogenicity of Venturia inaequalis strains of race 6 on apple clones (Malus sp.). Plant Dis 80:1179–1183

    Article  Google Scholar 

  • Patocchi A, Frei A, Frey JE, Kellerhals M (2009) Towards improvement of marker assisted selection of apple scab resistant cultivars: Venturia inaequalis virulence surveys and standardization of molecular marker alleles associated with resistance genes. Mol Breed 24:337–347

    Article  CAS  Google Scholar 

  • Peil A, Hanke V, Fischer C (2004) Six new apple cultivars from Dresden-Pillnitz. Acta Horticult 663:883–886

    Google Scholar 

  • Quamme HA, Hampson CR, Hall JW, Sholberg PL, Bedford KE, Randall P (2003) Inheritance of apple scab resistance from polygenic sources based on greenhouse and field evaluation. Acta Horticult 622:317–321

    Google Scholar 

  • Quamme HA, Hampson C, Sholberg PL (2005) Evaluation of scab (Venturia inaequalis) severity on 54 cultivars of apple in an unsprayed common planting. J Am Pomol Soc 59:78–90

    Google Scholar 

  • Reim S, Flachowsky H, Hanke MV, Peil A (2009) Verifying the parents of the Pillnitzer apple cultivars. Acta Horticult 814:319–323

    Google Scholar 

  • Rohlf FJ (1998) NTSYS-pc, version 2.0

  • Rudloff CF, Schmidt M (1934) Venturia inaequalis (Cooke) Aderh. II. Zur Züchtung schorfwiderstandsfähiger Apfelsorten. Züchter 6:288–294

    Google Scholar 

  • Rylov G, Sterkin I (1985) How many cultivars of Antonowka do exist in the world? J. Priusadebnoje chozjaistwo 4. http://www.prihoz.ru/sad/full.php?aid=740

  • Sandskär B, Gustafsson M (2004) Classification of apple scab resistance in two assortment orchards. Genet Resourc Crop Evol 51:197–203

    Article  Google Scholar 

  • Sandskär B, Liljeroth E (2005) Incidence of races of the apple scab pathogen (Venturia inaequalis) in apple growing districts in Sweden. Acta Agr Scand Sect B Soil Plant Sci 55:143–150

    Google Scholar 

  • Schmidt M (1936) Venturia inaequalis (Cooke) Aderhold. VI. Zur Frage nach dem Vorkommen physiologisch spezialisierter Rassen beim Erreger des Apfelschorfes. Erste Mitteil Gartenbauwiss 10:478–499

    Google Scholar 

  • Schmidt M (1938) Venturia inaequalis (Cooke) Aderhold. VIII. Weitere Untersuchungen zur Züchtung schorfwiderstandsfähiger Apfelsorten. Züchter 10:280–291

    Google Scholar 

  • Schmidt M (1939) Venturia inaequalis (Cooke) Aderhold. IX. Fünfjährige Freilandbeobachtungen über den Schorfbefall von Apfelsorten. Gartenbauwiss 13:567–586

    Google Scholar 

  • Schmidt M (1940) Venturia inaequalis (Cooke) Aderhold. X. Zur Vererbung der morphologischen Merkmale auf künstlichem Substrat un der Agressivität gegenüber bestimmten Wirten bei Einsporenherkünften des Apfelschorfpilzes. Gartenbauwiss 15:118–139

    Google Scholar 

  • Schmidt M (1948) Erreichtes und Erstrebtes in der Obstzüchtung. Züchter 19:135–153

    Google Scholar 

  • Sedov EN, Zhdanov VV (1981) Gene for immunity against apple scab (Venturia inaequalis). Genetika 17:1479–1485

    Google Scholar 

  • Semakin VP (1959) Clonal variability and selection of nursery apple trees. Plant Breed Abstr 30:359

    Google Scholar 

  • Shay JR, Dayton DF, Hough LF, Williams EB, Janick J 1955. Apple scab resistance. In: Wellensiek SJ, Nieuwstraten JP (eds), Proc 14th Int Hortic Congr, The Hague-Scheveningen, pp 733–739

  • Smith MWG (1971) National apple register of the United Kingdom. Ministry of Agriculture Fisheries and Food, London, p 652

    Google Scholar 

  • Soriano JM, Joshi SG, van Kaauwen M, Noordijk Y, Groenwold R, Henken B, van de Weg WE, Schouten HJ (2009) Identification and mapping of the novel apple scab resistance gene Vd3. Tree Genet Genom 5:475–482

    Article  Google Scholar 

  • Soufflet-Freslon V, Kouassi AB, Laurens F, Mathis F, Gobbin F, Patocchi A, Rezzonico F, Evans K, Fernández F, Boudichevskaia A, Dunemann F, Stankiewicz-Kosyl M, Komjanc M, Mott D, Gianfranceschi L, van de Weg WE, Bink M, Durel C-E (2007) Pedigree-based mapping of scab resistance QTL in apple. In: Abstr book 12th Eucarpia symp fruit breed genet, Zaragoza, 16–20 Sept 2007, p 94

  • Soufflet-Freslon V, Gianfranceschi L, Patocchi A, Durel C-E (2008) Inheritance studies of apple scab resistance and identification of Rvi14, a new major gene that acts together with other broad-spectrum QTL. Genome 51:657–667

    Article  PubMed  CAS  Google Scholar 

  • Spangelo LPS, Julien JB, Racicot HN, Blair DS (1956) Breeding apples for resistance to scab. Can J Agric Sci 36:329–338

    Google Scholar 

  • Spirin VV (1948) V.V. Spirin’s varieties. Plant Breed Abstr 19:377–378

    Google Scholar 

  • Tartarini S (1996) RAPD markers linked to the Vf gene for scab resistance in apple. Theor Appl Genet 92:803–810

    Article  CAS  Google Scholar 

  • Urbanovich O, Kazlovskaya Z (2008) Identification of scab resistance genes in apple trees by molecular markers. Sodinink Daržinink 27:347–357

    Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R (2010) The apple genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  PubMed  CAS  Google Scholar 

  • Vinatzer BA, Patocchi A, Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (2004) Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab-resistant accessions in Malus germplasm. Mol Breed 123:321–326

    CAS  Google Scholar 

  • Viršček Marn M, Štampar F, Javornik B (1996) Screening for scab resistance by RAPD markers in cultivars of apple (Malus spp.). Plant Breed 115:488–493

    Article  Google Scholar 

  • Visser T, Verhaegh JJ, de Vries DP (1974) Resistance to scab (Venturia inaequalis) and mildew (Podosphaera leucotricha) and fruiting properties of the offspring of the apple cultivar Antonovka. Euphytica 23:353–364

    Article  Google Scholar 

  • Way RD, Lamb RC (1974) Burgundy—an early fall, dark red apple. NY’s Food Life Sci Bull 47, 3 pp

  • Williams EB, Brown AG (1968) A new physiological race of Venturia inaequalis, incitant of apple scab. Plant Dis Rep 52:799–801

    Google Scholar 

  • Williams EB, Kuć J (1969) Resistance in Malus to Venturia inaequalis. Ann Rev Phytopathol 7:223–246

    Article  CAS  Google Scholar 

  • Zhdanov VV, Sedov EN (2002) Breeding for digenic apple scab resistance to scab. Russian J Genet 38:1411–1416

    Article  CAS  Google Scholar 

  • Zini E (2005) Construzione di una mappa di associazione della popolazione di melo ‘Golden Delicious’ × ‘Freedom’ e caratterizzazione del gene di resistenza Va a ticchiolatura. PhD thesis, DCA-BO, Bologna, Italy, 126 pp

  • Zwintzscher M (1967) Fruit breeding in Western Europe. Proc 17th Int Hortic Congr 2:31–39

    Google Scholar 

  • Zwintzscher M (1971) Die Schorfresistenz des Apfels: Ausgangsmaterial, Infektions und Selektionsmethoden. Proc Tree Fruit Breed Symp Eucarpia Fruit Section, Angers, 14–18 September 1970, pp 199–216

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent G. M. Bus.

Additional information

Communicated by E. Dirlewanger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bus, V.G.M., van de Weg, W.E., Peil, A. et al. The role of Schmidt ‘Antonovka’ in apple scab resistance breeding. Tree Genetics & Genomes 8, 627–642 (2012). https://doi.org/10.1007/s11295-012-0470-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0470-2

Keywords

Navigation