Skip to main content
Log in

Complete sequence of the chloroplast genome from pear (Pyrus pyrifolia): genome structure and comparative analysis

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The chloroplast genome of Pyrus was found to be 159,922 bp in length which included a pair of inverted repeats (IRs) of 26,392 bp, separated by a small single-copy region of 19,237 bp and a large single-copy region (LSC) of 87,901 bp. A total of 130 predicted genes (113 unique genes and 17 genes, which were duplicated in the IR) including 79 protein-coding genes, four ribosomal RNA genes and 30 tRNA genes were identified based on similarity to homologs from the chloroplast genome of Nicotiana tabacum. Genome organization was very similar to the inferred ancestral angiosperm chloroplast genome. Comparisons between Pyrus, Malus, and Prunus in Rosaceae revealed 220 indels (≥10 bp). Excluding ycf1 and ycf2, which contained deletions in the coding region, all of these were detected in the spacer or intron regions. Three insertions and 13 deletions were detected in Pyrus compared to the same loci in Malus and Prunus. After comparing 89 noncoding chloroplast DNA regions in Pyrus and Malus, highly variable regions such as ndhC-trnV and trnR-atpA were identified. In Pyrus and Malus, the IR/LSC borders were 62 bp shorter than those of Prunus. In addition, there were length mutations at the IRa/LSC junction and in trnH. A total of 67 simple sequence repeats (more than 10 repeated motifs) were identified in the Pyrus chloroplast genome. The indels and simple sequence repeats will be useful evolutionary tools at both intra- and interspecific levels. Phylogenetic analysis demonstrated a close relationship between Pyrus and Prunus in the Rosaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aldasoro JJ, Aedo C, Garmendia FM (1996) The genus Pyrus L. (Rosaceae) in South-West Europe and North Africa. Bot J Linn Soc 121:143–158

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic Local Alignment Search Tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Bausher MG, Singh ND, Mozoru J, Lee SB, Jansen RK, Daniell H (2006) The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var. ‘Ridge Pineapple’: organization and phylogenetic relationships to other angiosperms. BMC Plant Biol 6:21

    Article  PubMed  Google Scholar 

  • Bell RL (1990) Pears (Pyrus). In: Moore JN, Ballington JR Jr (eds) Genetic resources of temperate fruit and nut crops I. International Society for Horticultural Science, Wageningen, pp 655–697

    Google Scholar 

  • Bock R, Khan MS (2004) Taming plastids for a green future. Trend Biotechnol 22(6):311–318

    Article  CAS  Google Scholar 

  • Cato SA, Richardson TE (1996) Inter- and intraspecific polymorphism at chloroplast SSR loci and the inheritance of plastids in Pinus radiata D. Don Theor Appl Genet 93:587–592

    Article  CAS  Google Scholar 

  • Challice JS, Westwood MN (1973) Numerical taxonomic studies of the genus Pyrus using both chemical and botanical characters. Bot J Linn Soc 67:121–148

    Article  Google Scholar 

  • Conant GC, Wolfe KH (2008) GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics 24:861–862

    Article  PubMed  CAS  Google Scholar 

  • Cosner ME, Jansen RK, Palmer JD, Downie SR (1997) The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr Genet 31:419–429

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Ruiz ON, Dhingra A (2004) Chloroplast genetic engineering to improve agronomic traits. Methods Mol Biol 286:111–138

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791

    Article  Google Scholar 

  • Goremykin VV, Holland B, Hirsch-Ernst KI, Hellwig FH (2005) Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Mol Biol Evol 22:1813–1822

    Article  PubMed  CAS  Google Scholar 

  • Goulding SE, Olmstead RG, Morden CW, Wolfe KH (1996) Ebb and flow of the chloroplast inverted repeat. Mol Gen Genet 252:195–206

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217:185–194

    Article  PubMed  CAS  Google Scholar 

  • Huse S, Huber J, Morrison H, Sogin M, Welch D (2007) Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8:R143

    Article  PubMed  Google Scholar 

  • Ickert-Bond SM, Wen J (2006) Phylogeny and biogeography of Altingiaceae: evidence from combined analysis of five non-coding chloroplast regions. Mol Phylogenet Evol 39:512–528

    Article  PubMed  CAS  Google Scholar 

  • Iketani H, Manabe T, Matsuta N, Akihama T, Hayashi T (1998) Incongruence between RFLPs of chloroplast DNA and morphological classification in east Asia pear (Pyrus spp.). Genet Resour Crop Evol 45:533–539

    Article  Google Scholar 

  • Ishii T, Xu Y, McCouch SR (2001) Nuclear- and chloroplast microsatellite variation in A-genome species of rice. Genome 44:658–666

    Article  PubMed  CAS  Google Scholar 

  • Jansen RK, Raubeson LA, Boore JL, dePamphilis CW, Chumley TW, Haberle RC, Wyman SK, Alverson AJ, Peery R, Herman SJ, Fourcade HM, Kuehl JV, McNeal JR, Leebens-Mack J, Cui L (2005) Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol 395:348–384

    Article  PubMed  CAS  Google Scholar 

  • Jansen RK, Kaittanis C, Saski C, Lee SB, Tomkins J, Alverson AJ, Daniell H (2006) Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Biol 6:32

    Article  PubMed  Google Scholar 

  • Jansen RK, Cai Z, Raubeson LA, Daniell H, dePamphilis CW, Leebens-Mack J, Muller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104:19369–19374

    Article  PubMed  CAS  Google Scholar 

  • Jansen RK, Saski C, Lee SB, Hansen AK, Daniell H (2011) Complete plastid genome sequences of three rosids (Castanea, Prunus, Theobroma): evidence for at least two independent transfers of rpl22 to the nucleus. Mol Biol Evol 28(1):835–847

    Article  PubMed  CAS  Google Scholar 

  • Katayama H, Uematsu C (2003) Comparative analysis of chloroplast DNA in Pyrus species: physical map and gene localization. Theor Appl Genet 106:303–310

    PubMed  CAS  Google Scholar 

  • Katayama H, Uematsu C (2005) Structural analysis of chloroplast DNA in Prunus (Rosaceae): evolution, genetic diversity and unequal mutations. Theor Appl Genet 111:1430–1439

    Article  PubMed  CAS  Google Scholar 

  • Katayama H, Tachibana M, Iketani H, Zhang S, Uematsu C (2012) Phylogenetic utility of structural alterations found in the chloroplast genome of pear: hypervariable regions in a highly conserved genome. Tree Genet Genomes. doi:10.1007/s11295-011-0442-y

  • Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91:1481–1493

    Article  PubMed  Google Scholar 

  • Kim KJ, Lee HL (2004) Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 11:247–261

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Jung JD, Lee JA, Park HW, Oh KH, Jeong WJ, Choi DW, Liu JR, Cho KY (2006) Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome. Plant Cell Rep 25:334–340

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Iketani H, Kotobuki K, Matsuta N, Ban Y, Hayashi T, Yamamoto T (2003) Genetic characterization of pear varieties revealed by chloroplast DNA sequences. J Hort Sci & Biot 78:241–247

    CAS  Google Scholar 

  • Knox EB, Palmer JD (1998) Chloroplast DNA evidence on the origin and radiation of the giant lobelias in eastern Africa. Syst Bot 23:109–149

    Article  Google Scholar 

  • Leebens-Mack J, Raubeson LA, Cui L, Kuehl J, Fourcade M, Chumley T, Boore JL, Jansen RK, dePamphilis CW (2005) Identifying the basal angiosperms in chloroplast genome phylogenies: sampling one’s way out of the Felsenstein zone. Mol Biol Evol 22:1948–1963

    Article  PubMed  CAS  Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    PubMed  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE; a program for improved detection of transfer RNA genes in genomic sequence. Nucl Acids Res 25:955–964

    PubMed  CAS  Google Scholar 

  • Maier RM, Neckermann K, Igloi GL, Kossel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251:614–628

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (2002) Engineering the plastid genome of higher plants. Curr Opin Plant Biol 5:164–172

    Article  PubMed  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter LS, Dubchak I (2000) VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16:1046

    Article  PubMed  CAS  Google Scholar 

  • Metzker ML (2005) Emerging technologies in DNA sequencing. Genome Res 15(12):1767–1776

    Article  PubMed  CAS  Google Scholar 

  • Milligan BG, Hampton JN, Palmer JD (1989) Dispersed repeats and structural reorganization in subclover chloroplast DNA. Mol Biol Evol 6:355–368

    PubMed  CAS  Google Scholar 

  • Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, Folta KM, Soltis DE (2006) Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant Biol 6:17

    Article  PubMed  Google Scholar 

  • Ogihara Y, Terachi T, Sasakuma T (1988) Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc Natl Acad Sci USA 85:8573–8577

    Article  PubMed  CAS  Google Scholar 

  • Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka M, Shiina T, Terachi T, Utsugi S, Murata M, Mori N, Takumi S, Ikeo K, Gojobori T, Murai R, Murai K, Matsuoka Y, Ohnishi Y, Tajiri H, Tsunewaki K (2000) Chinese spring wheat (Triticum aestivum L.) chloroplast genome: complete sequence and contig clones. Plant Mol Biol Rep 18:243–253

    Article  CAS  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574

    Article  CAS  Google Scholar 

  • Palmer JD (1987) Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. Am Nat 130:S6

    Article  CAS  Google Scholar 

  • Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Bogorad L, Vasil IK (eds) The molecular biology of plastids. Academic, San Diego, pp 5–53

    Google Scholar 

  • Palmer JD, Jorgensen RA, Thompson WF (1985) Chloroplast DNA variation and evolution in Pisum; patterns of change and phylogenetic analysis. Genetics 109:195–213

    PubMed  CAS  Google Scholar 

  • Palmer JD, Osorio B, Thompson WF (1988) Evolutionary significance of inversions in legume chloroplast DNAs. Curr Genet 14:65–74

    Article  CAS  Google Scholar 

  • Potter D, Gao F, Bortiri PE, Oh SH, Baggett S (2002) Phylogenetic relationships in Rosaceae inferred from chloroplast matK and trnL-trnF nucleotide sequence data. Plant Syst Evol 23:77–89

    Article  Google Scholar 

  • Powell W, Morgante M, McDevitt R, Vendramin GG, Rafalski JA (1995) Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci USA 92:7759–7763

    Article  PubMed  CAS  Google Scholar 

  • Raubeson LA, Jansen RK (2005) Chloroplast genomes of plants. In: Henry R (ed) Diversity and evolution of plants—genotypic and phenotypic variation in higher plants. CABI, Wallingford, pp 45–68

    Chapter  Google Scholar 

  • Ravi V, Khurana JP, Tyagi AK, Khurana P (2006) The chloroplast genome of mulberry: complete nucleotide sequence, gene organization and comparative analysis. Tree Genet Genomes 3:49–59

    Article  Google Scholar 

  • Rehder A (1940) Manual of cultivated trees and shrubs, 2nd edn. Macmillan, New York, pp 426–451

    Google Scholar 

  • Ronaghi M, Uhlen M, Nyren P (1998) A sequencing method based on real-time pyrophosphate. Science 281:363–365

    Article  PubMed  CAS  Google Scholar 

  • Rubtsov GA (1944) Geographical distribution of the genus Pyrus and trends and factors in its evolution. Am Nat 78:358–366

    Article  Google Scholar 

  • Ruhlman T, Lee SB, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell D (2006) Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms. BMC Genomics 7:224

    Article  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S (1999) Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res 6:283–290

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-linneweber C, Maier RM, Alcaraz JP, Ccttet A, Herrmann RG, Mache R (2001) The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol Biol 45:307–315

    Article  PubMed  CAS  Google Scholar 

  • Schonswetter P, Popp M, Brochmann C (2006a) Central Asian origin of and strong genetic differentiation among the populations of the rare and disjunct Carex atrofusca (Cyperaceae) in the Alps. J Biogeogr 33:948–956

    Article  Google Scholar 

  • Schonswetter P, Popp M, Brochmann C (2006b) Rare arctic-alpine plants of the European Alps have different immigration histories: the snow bed species Minuartia biflora and Ranunculus pygmaeus. Mol Ecol 15:709–720

    Article  PubMed  CAS  Google Scholar 

  • Schwartz S, Zhang Z, Frazer K, Smit A, Riemer C, Bouck J, Gibbs R, Hardison R, Miller W (2000) PipMaker: a web server for aligning two genomic DNA sequences. Genome Res 10:577–586

    Article  PubMed  CAS  Google Scholar 

  • Shaw J, Small RL (2005) Chloroplast DNA phylogeny and phylogeography of the North American plums (Prunus subgenus Prunus section Prunocerasus, Rosaceae). Am J Bot 92:2011–2030

    Article  PubMed  CAS  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparisons of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  PubMed  CAS  Google Scholar 

  • Shimada H, Sugiura M (1989) Pseudogenes and short repeated sequences in the rice chloroplast genome. Curr Genet 16:293–301

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Sinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    PubMed  CAS  Google Scholar 

  • Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19:149–168

    Article  PubMed  CAS  Google Scholar 

  • Swofford D (2003) PAUP: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Tangphatsornruang S, Sangsrakru D, Chanprasert J, Uthaipaisanwong P, Yoocha T, Jomchai N, Tragoonrung S (2010) The chloroplast genome sequence of mungbean (Vigna radiata) determined by high-throughput pyrosequencing: structural organization and phylogenetic relationships. DNA Res 17:11–22

    Article  PubMed  CAS  Google Scholar 

  • Volk GM, Richards CM, Henk AD, Reilley AA, Bassil NV, Postman JD (2006) Diversity of wild pyrus communis based on microsatellite analysis. J Amer Soc Hort Sci 131:408–417

    CAS  Google Scholar 

  • Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA 91:9794–9798

    Article  PubMed  CAS  Google Scholar 

  • Wills DM, Burk JM (2006) Chloroplast DNA variation confirms a single origin of domesticated sunflower (Helianthus annuus L.). J Hered 97:403–408

    Article  PubMed  CAS  Google Scholar 

  • Wyman SK, Boore JL, Jansen RK (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N (2002) Simple sequence repeats for genetic analysis in pear. Euphytica 124:129–137

    Article  CAS  Google Scholar 

  • Yang M, Zang X, Liu G, Yin Y, Chen K, Yun Q, Zhao D, Al-Mssaiiem IS, Yu J (2010) The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS One 5(9):e12762

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Sincere appreciation is expressed to Dr. Anne Edwards, John Innes Centre, UK, for her English correction and useful suggestions. This work was partially supported by Grant-in-Aid (no. 17510196 and no. 19580031) for Scientific Research from the Ministry of Education, Science and Culture and by grant-in-aid (Genomics for Agricultural Innovation, DD-4040) for the Ministry of Agriculture, Forestry and Fisheries of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Katayama.

Additional information

Communicated by A. Abbott

S. Terakami and Y. Matsumura contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

PDF 28 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terakami, S., Matsumura, Y., Kurita, K. et al. Complete sequence of the chloroplast genome from pear (Pyrus pyrifolia): genome structure and comparative analysis. Tree Genetics & Genomes 8, 841–854 (2012). https://doi.org/10.1007/s11295-012-0469-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0469-8

Keywords

Navigation