Skip to main content
Log in

Genetic parameters of growth, straightness and wood chemistry traits in Pinus pinaster

  • Original Paper
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

Introduction

Tree breeding is giving an increasing attention to wood properties in order to better fit the requirements of the saw, board, pulp and paper industries. In particular, it has been reported that lignin and cellulose content display moderate to high heritabilities making them prime candidates for genetic improvement of wood chemistry. Moreover, these traits have been shown to be negatively correlated at both phenotypic and genetic levels. However, they have generally been evaluated against a narrow genetic background, and little is known about their correlations with mandatory selection criteria such as growth and straightness.

Materials and methods

In this study, we first investigated the performance of near-infrared (NIR) spectroscopy combined with a non-destructive sampling method to assess chemical properties of wood in maritime pine. We afterwards estimated genetic parameters of growth, stem form and wood chemistry traits across a large genetic background in a progeny trial and clonally replicated progenies.

Results

Our results showed that removal of extractives prior to NIR spectra acquisition is highly recommended for achieving high accuracy in NIRS-PLSR prediction for wood chemistry traits in maritime pine.

We further observed moderate heritabilities (0.15–0.55) for the studied traits. Wood chemistry traits were genetically inter-correlated (e.g., negatively between lignin and cellulose), whereas correlations with growth were not significant, indicating that growth and chemical properties could be improved independently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augusto L, Bert D (2005) Estimating stemwood nutrient concentration with an increment borer: a potential source of error. Forestry 78:451–455

    Article  Google Scholar 

  • Baillères H, Davrieus F, Pichavant FH (2002) Near infrared analysis as a tool for rapid screening of some major wood characteristics in a eucalyptus breeding program. Ann For Sci 59:479–490

    Article  Google Scholar 

  • Baltunis BS, Huber DA, White TL, Goldfarb B, Stelzer HE (2007) Genetic analysis of early field growth of loblolly pine clones and seedlings from the same full-sib families. Can J For Res 37:195–205

    Article  Google Scholar 

  • Baucher M, Halpin C, Petit-Conil M, Boerjan W (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38:305–350

    Article  PubMed  CAS  Google Scholar 

  • Bouffier L, Charlot C, Raffin A, Rozenberg P, Kremer A (2008) Can wood density be efficiently selected at early stage in maritime pine (Pinus pinaster Ait.)? Ann For Sci 65:106–106

    Article  Google Scholar 

  • Bouffier L, Raffin A, Rozenberg P, Meredieu C, Kremer A (2009) What are the consequences of growth selection on wood density in the French maritime pine breeding programme? Tree Genet Genom 5:11–25

    Article  Google Scholar 

  • Burdon RD, Kibblewhite RP, Walker JCF, Megraw RA, Evans R, Cown DJ (2004) Juvenile versus mature wood: a new concept, orthogonal to corewood versus outerwood, with special reference to Pinus radiata and P. taeda. For Sci 50:399–415

    Google Scholar 

  • Burns DA, Ciurczak EW (2008) Handbook of near-infrared analysis, thirdth edn. CRC Press, Boca Raton, p 808 p

    Google Scholar 

  • Chantre G, Rozenberg P, Baonza V, Macchioni N, Le Turcq A, Petit Conil M, Heois B (2002) Genetic selection within Douglas fir (Pseudotsuga menziesii) in Europe for papermaking uses. Ann For Sci 59:583–593

    Article  Google Scholar 

  • Chiang VL, Puumala RJ, Takeuchi H, Eckert RE (1988) Comparison of softwood and hardwood kraft pulping. Tappi J 71:173–176

    CAS  Google Scholar 

  • Comstock RE, Kelleher T, Morrow EB (1958) Genetic variation in an asexual species, the garden strawberry. Genetics 43:634–646

    PubMed  CAS  Google Scholar 

  • Costa e Silva JCE, Wellendorf H, Pereira H (1998) Clonal variation in wood quality and growth in young Sitka spruce (Picea sitchensis (Bong.) Xarr.): estimation of quantitative genetic parameters and index selection for improved pulpwood. Silvae Genet 47:20–33

    Google Scholar 

  • Costa e Silva J, Borralho NMG, Potts BM (2004) Additive and non-additive genetic parameters from clonally replicated and seedling progenies of Eucalyptus globulus. Theor Appl Genet 108:1113–1119

    Article  PubMed  Google Scholar 

  • Costa e Silva J, Borralho N, Araújo J, Vaillancourt R, Potts B (2009) Genetic parameters for growth, wood density and pulp yield in Eucalyptus globulus. Tree Genet Genom 5:291–305

    Article  Google Scholar 

  • Costa P, Durel CE (1996) Time trends in genetic control over height and diameter in maritime pine. Can J For Res 26:1209–1217

    Article  Google Scholar 

  • Cotterill PP, Dean CA, Van Wyk G (1987) Additive and dominance genetic effects in Pinus pinaster. P. radiata and P. elliottii and some implications for breeding strategy. Silvae Genet 36:221–231

    Google Scholar 

  • Da Silva Perez D, Guillemain A, Chantre G, Alazard P, Alves A, Rodrigues J, Rozenberg P, Plomion C, Robin E (2005) Improvement of wood, pulp and paper quality of maritime pine (Pinus pinaster Ait) by combining rapid assessment techniques and genetics. International symposium on wood, fibre and pulping chemistry. Appita Inc, Auckland, p 207, 214

    Google Scholar 

  • Da Silva Perez D, Guillemain A, Alazard P, Plomion C, Rozenberg P, Carlos Rodrigues J, Alves A, Chantre G (2007) Improvement of Pinus pinaster Ait elite trees selection by combining near infrared spectroscopy and genetic tools. Holzforschung 61:611–622

    Article  Google Scholar 

  • Da Silva Perez D, Guillemain A, Petit Conil M (2008) Some factors influencing the prediction of wood and pulp properties by near infrared spectroscopy. O Papel 69:60–75

    Google Scholar 

  • Danjon F (1994) Heritabilities and genetic correlations for estimated growth curve parameters in maritime pine. Theor Appl Genet 89:911–921

    Article  Google Scholar 

  • Dumail JF, Castéra P, Morlier P (1998) Hardness and basic density variation in the juvenile wood of maritime pine. Ann For Sci 55:911–923

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman, New York

    Google Scholar 

  • Foster GS, Shaw DV (1988) Using clonal replicates to explore genetic variation in a perennial plant species. Theor Appl Genet 76:788–794

    Article  Google Scholar 

  • Gaspar MJ, Louzada JL, Silva ME, Aguiar A, Almeida MH (2008) Age trends in genetic parameters of wood density components in 46 half-sibling families of Pinus pinaster. Can J For Res 38:1470–1477

    Article  Google Scholar 

  • Gaspar MJ, de-Lucas AI, Alia R, Almiro Pinto Paiva J, Hidalgo E, Louzada J, Almeida H, González-Martínez SC (2009) Use of molecular markers for estimating breeding parameters: a case study in a Pinus pinaster Ait. progeny trial. Tree Genet Genom 5:609–616

    Article  Google Scholar 

  • Gilmour AR, Thompson R, Cullis BR (1995) Average information REML: an efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51:1440–1450

    Article  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2006) ASReml user guide release 2.0. VSN International Ltd, Hemel Hempstead

    Google Scholar 

  • Hannrup B, Cahalan C, Chantre G, Grabner M, Karlsson B, Bayon IL, Jones GL, Müller U, Pereira H, Rodrigues JC (2004) Genetic parameters of growth and wood quality traits in Picea abies. Scand J For Res 19:14–29

    Article  Google Scholar 

  • Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423–447

    Article  PubMed  CAS  Google Scholar 

  • Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812

    Article  PubMed  CAS  Google Scholar 

  • Isik F, Li B, Frampton J (2003) Estimates of additive, dominance and epistatic genetic variances from a clonally replicated test of loblolly pine. For Sci 49:77–88

    Google Scholar 

  • Jones PD, Schimleck LR, Daniels RF, Clark A, Purnell RC (2008) Comparison of Pinus taeda L. whole-tree wood property calibrations using diffuse reflectance near infrared spectra obtained using a variety of sampling options. Wood Sci Technol 42:385–400

    Article  CAS  Google Scholar 

  • Kube PD, Raymond CA (2002) Prediction of whole-tree basic density and pulp yield using wood core samples in Eucalyptus nitens. Appita J 55:43–48

    CAS  Google Scholar 

  • Kusnandar D, Galwey NW, Hertzler GL, Butcher TB (1998) Age trends in variances and heritabilities for diameter and height in maritime pine (Pinus pinaster Ait.) in Western Australia. Silvae Genet 47:136–141

    Google Scholar 

  • Leple J-C, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang K-Y, Kim H, Ruel K, Lefebvre A, Joseleau J-P, Grima-Pettenati J, De Rycke R, Andersson-Gunneras S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjan W (2007) Downregulation of cinnamoyl-coenzyme a reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691

    Article  PubMed  CAS  Google Scholar 

  • Martens H, Naes T (1989) Multivariate calibration. Wiley, New York

    Google Scholar 

  • Mullin TJ, Park YS (1992) Estimating genetic gains from alternative breeding strategies for clonal forestry. Can J For Res 22:14–23

    Article  Google Scholar 

  • Park YW, Baba K, Furuta Y, Iida I, Sameshima K, Arai M, Hayashi T (2004) Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FEBS Lett 564:183–187

    Article  PubMed  CAS  Google Scholar 

  • Peter GF, White DE, Torre RDL, Singh R (2007) The value of forest biotechnology: a cost modelling study with loblolly pine and kraft linerboard in the southeastern USA. Int J Biotechnol 9:415–435

    Article  Google Scholar 

  • Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leple JC, Pollet B, Mila I, Webster EA, Marstorp HG, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu D, Halpin C (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612

    Article  PubMed  CAS  Google Scholar 

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523

    Article  PubMed  CAS  Google Scholar 

  • Pot D, Chantre G, Rozenberg P, Rodrigues JC, Jones GL, Pereira H, Hannrup B, Cahalan C, Plomion C (2002) Genetic control of pulp and timber properties in maritime pine (Pinus pinaster Ait.). Ann For Sci 59:563–575

    Article  Google Scholar 

  • Pot D, Rodrigues J-C, Rozenberg P, Chantre G, Tibbits J, Cahalan C, Pichavant F, Plomion C (2006) QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait.). Tree Genet Genom 2:10–24

    Article  Google Scholar 

  • Puls J, Glawischnig TD, Herrmann A, Borchmann A, Saake B (1995) Comparative investigations for quantitative determinations of wood sugars. In: The 8th International Symposium on Wood and Pulping Chemistry, Helsinki, Finland, pp. 503–510

  • Rowell RM (2005) Handbook of wood chemistry and wood composites. Taylor & Francis, New York

    Google Scholar 

  • Rydholm SA (1965) Pulping processes. Interscience, New York

    Google Scholar 

  • Schwanninger M, Hinterstoisser B (2002) Klason lignin: modifications to improve the precision of the standardized determination. Holzforschung 56:161–166

    Article  CAS  Google Scholar 

  • Sewell MM, Davis MF, Tuskan GA, Wheeler NC, Elam CC, Bassoni DL, Neale DB (2002) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties. Theor Appl Genet 104:214–222

    Article  PubMed  CAS  Google Scholar 

  • So CL, Via BK, Groom LH, Schimleck LR, Shupe TF, Kelley SS, Rials TG (2004) Near infrared spectroscopy in the forest products industry. For Prod J 54:6–16

    Google Scholar 

  • Sorensen D, Gianola D (2002) Likelihood, Bayesian and MCMC methods in quantitative genetics. Springer, Berlin

    Google Scholar 

  • Sykes R, Li B, Isik F, Kadla J, Chang HM (2006) Genetic variation and genotype by environment interactions of juvenile wood chemical properties in Pinus taeda L. Ann For Sci 63:897–904

    Article  CAS  Google Scholar 

  • Tsuchikawa S (2007) A review of recent near infrared research for wood and paper. Appl Spectroscop Rev 42:43–71

    Article  CAS  Google Scholar 

  • Voelker SL, Lachenbruch B, Meinzer FC, Jourdes M, Ki C, Patten AM, Davin LB, Lewis NG, Tuskan GA, Gunter L, Decker SR, Selig MJ, Sykes R, Himmel ME, Kitin P, Shevchenko O, Strauss SH (2010) Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Physiol 154:874–886

    Article  PubMed  CAS  Google Scholar 

  • Wagner A, Donaldson L, Kim H, Phillips L, Flint H, Steward D, Torr K, Koch G, Schmitt U, Ralph J (2009) Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiol 149:370–383

    Article  PubMed  CAS  Google Scholar 

  • Wallis AFA, Wearne RH, Wright PJ (1996) Analytical characteristics of plantation eucalypt woods relating to kraft pulp yields. Appita J 49:427–432

    CAS  Google Scholar 

  • Wang T, Aitken SN, Rozenberg P, Carlson MR (1999) Selection for height growth and Pilodyn pin penetration in lodgepole pine: effects on growth traits, wood properties, and their relationships. Can J For Res 29:434–445

    Article  Google Scholar 

  • Workman JJ, Mobvley PR, Kowalski BR, Bro R (1996) Review of chemometrics applied to spectroscopy: 1985–95. Appl Spectroscop Rev 31:73–124

    Article  CAS  Google Scholar 

  • Wu RL (1996) Detecting epistatic genetic variance with a clonally replicated design: models for low vs high-order nonallelic interaction. Theor Appl Genet 93:102–109

    Article  Google Scholar 

  • Zobel BJ, Sprague JR (1998) Juvenile wood in forest trees. Springer, Berlin

    Google Scholar 

  • Zobel BJ, Kellison RC, Matthias MF, Hatcher AV (1972) Wood density of the southern pines. North Carolina Agricultural Experiment Station. Tech Bul 208:56

    Google Scholar 

Download references

Acknowledgements

We thank INRA Experimental Unit UE0570 and Thomas Sanchez from FCBA for collecting the samples. We also thank Pierre Gardère, Maëlys Kerdraon and Guillaume Kubinski for wood samples processing, and Laurent Bouffier, Pauline Garnier-Géré, Annie Raffin, Pierre Alazard, Barry Gardiner and two anonymous reviewers for their helpful comments on the manuscript and/or analyses. This research was supported by grants from Agence Nationale de la Recherche Genoplante (GenoQB, GNP05013C), from the European Union (GEMINI, QLRT-1999-00942) and from the Aquitaine Region. Phenotyping of the half-sib trial was performed at the GenoBois Facility of Pierroton (Cestas). C. Lepoittevin was supported by CIFRE contract between FCBA and INRA. F. Hubert was funded by the EVOLTREE Network of Excellence (http://www.evoltree.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Lepoittevin.

Additional information

Handling Editor: Barry Gardiner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lepoittevin, C., Rousseau, JP., Guillemin, A. et al. Genetic parameters of growth, straightness and wood chemistry traits in Pinus pinaster . Annals of Forest Science 68, 873–884 (2011). https://doi.org/10.1007/s13595-011-0084-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13595-011-0084-0

Keywords

Navigation