Skip to main content
Log in

What is the genetic origin of teak (Tectona grandis L.) introduced in Africa and in Indonesia?

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The first introduction of Tectona grandis in Indonesia took place between the fourteenth and sixteenth centuries and in Africa in the nineteenth century. A total of 1.1 and 0.3 million ha, respectively were planted in the two areas. The extension of teak plantations often started from these first introductions. Unfortunately, the documentation concerning dates, planting stocks and the sources of origin of the teak imported into the different countries was very inaccurate. In this study, the use of 15 microsatellite molecular markers enabled us to compare 22 exotic teak provenances with 17 provenances of the natural range. Results of the analysis showed that the provenances from South India were not related to the provenances that were first introduced in either Africa or Indonesia. Nearly 95% of teak landraces in Benin, Cameroon, Côte d’Ivoire, Tanzania, Togo and Senegal came from North India, and 96% of Indonesian and Ghanaian teak appeared to be very closely linked to Central Laos. The genetic origin of introduced teak was confirmed by the main traits of interest of provenances observed in international trials. Thus, trees from North India had very bad stem forms compared to Laotian and Thai provenances, which generally had good stem forms but low vigour. This genetic knowledge is essential for programmes to develop varieties and to improve the quality of plantations, particularly in Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altona T (1922) Teak and Hindoos. Tectona 15:457–506

    Google Scholar 

  • Bedell PE (1989) Preliminary observations on variability of teak in India. Indian For 115:72–81

    Google Scholar 

  • Begué L (1957) Problèmes forestiers de l’Indonésie. Bois For Trop 56:3–16

    Google Scholar 

  • Behaghel I (1999) The state of teak (Tectona grandis) plantations worldwide. Bois For Trop 262:6–18

    Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier (France) Available at http://www.genetix.univ-montp2.fr/genetix/genetix.htm

  • Bhat KM, Ma HO (2004) Teak growers unite! ITTO Trop For Update 14:3–5

    Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evol 32:550–570

    Article  Google Scholar 

  • Chollet MA (1958) Le teck au Togo. Bois For Trop 49:9–18

    Google Scholar 

  • Cornuet J-M, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genet 153:1989–2000

    CAS  Google Scholar 

  • Dieringer D, Schlötterer C (2003) Microsatellite Analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  CAS  Google Scholar 

  • Dupuy B, Verhaegen D (1993) Plantation-grown teak (Tectona grandis) in Côte d’Ivoire. Bois For Trop 235:9–24

    Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Heckel G (2006) Computer programs for population genetics data analysis: a survival guide. Nat Rev Genet 7:745–758

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50

    CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2007) Arlequin ver 3.11: an integrated software package for population genetics data analysis. Computational and Molecular Population Genetics Lab, Institute of Zoology University of Berne Switzerland, distributed by the authors at (http://lgb.unige.ch/arlequin/).

  • FAO (2001) Global forest resources assessment 2000 Main report. FAO For Pap 140:1–511

    Google Scholar 

  • Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Department of Genome Sciences, University of Washington, Seattle, distributed by the authors at (http://evolution.gs.washington.edu/phylip.html).

  • Fofana IJ, Ofori D, Poitel M, Verhaegen D (2009) Diversity and genetic structure of teak (Tectona grandis L.f) in its natural range using DNA microsatellite markers. New For 37:175–195

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices. Version 2.9.3. Department of Ecology & Evolution, Biology Building, UNIL, CH-1015 Lausanne, Switzerland, distributed by the authors at (http://www2.unil.ch/popgen/softwares/fstat.htm).

  • Hoffman JI, Amos W (2005) Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Mol Ecol 14:599–612

    Article  CAS  PubMed  Google Scholar 

  • Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecol 52:577–586

    Article  Google Scholar 

  • Kaosa-ard A (1999) Gains from provenance selection. Proc of intern semin on site technol and product of teak plant Chiang Mai, Thailand, 26–29 January:191–207

  • Keiding H, Wellendorf H, Lauridsen EB (1986) Evaluation of an international series of teak provenance trials. Danida For Seed Cent:1–81

  • Kertadikara AWS, Prat D (1995) Isozyme variation among teak (Tectona grandis L.f.) provenances. Theor Appl Genet 90:803–810

    Article  CAS  Google Scholar 

  • Kjaer ED, Lauridsen EB (1996) Results from a second evaluation of DFSC coordinated teak (Tectona grandis) provenance trials: has new information been obtained? Proceedings of the conference: tree improvement for sustainable tropical forestry Caloundra, Queensland, Australia, 27 October–1 November, pp 154–157

  • Kjaer ED, Siegismund HR (1996) Allozyme diversity in two Tanzanian and two Nicaraguan landraces of teak (Tectona grandis L.). For Genet 3:45–52

    Google Scholar 

  • Kjaer ED, Lauridsen EB, Wellendorf H (1995) Second evaluation of an international series of Teak provenance trials. Danida Forest Seed Center

  • Kjaer ED, Siegismund HR, Suangtho V (1996) A multivariate study on genetic variation in teak (Tectona grandis (L.)). Silvae Genet 45:361–368

    Google Scholar 

  • Kokutse AD (2002) Analyse de la qualité du bois de teck (Tectona grandis L.f) en plantation au Togo: formation du bois de coeur, propriétés mécaniques et durabilité. Thèse de l’école doctorale des sciences physiques et de l’ingénieur—Bordeaux N°d’ordre 2638:1–142

  • Kokutse AD, Baillères H, Stokes A, Kokou K (2004) Proportion and quality of heartwood in Togolese teak (Tectona grandis L.f.). For Ecol Manag 189:37–48

    Article  Google Scholar 

  • Koskela J, Vinceti B, Dvorak W, Bush D, Dawson I, Loo J, Kjaer ED, Navarro C, Padolina C, Bordács S, Jamnadass R, Graudal L, Ramamonjisoa L (2010) The use and exchange of forest genetic resources for food and agriculture. FAO Commission on Genetic Resources for Food and Agriculture Background study paper N° 44:1–67

  • Logossa ZA (2006) Caractérisation génétique des tecks (Tectona grandis L.f.) provenant de plantations du Togo. Sciences Technologiques. Bordeaux 1, p 29

  • Madoffe SS, Maghembe JA (1988) Performance of teak (Tectona grandis L.f.) provenances seventeen years after planting at Longuza, Tanzania. Silvae Genet 37:175–178

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genet 89:583–590

    CAS  Google Scholar 

  • Nicodemus A, Nagarajan B, Narayanan C, Varghese M, Subramanian K (2003) RAPD variation in Indian teak populations and its implications for breeding and conservation. Proceedings of the international conference on quality timber products of teak from sustainable forest management Peechi, India, 2–5 December, pp 321–330

  • Paetkau D, Waits LP, Clarkson PL, Craigheadg L, Strobe C (1997) An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae) populations. Genet 147:1943–1957

    CAS  Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  CAS  PubMed  Google Scholar 

  • Pandey D, Brown C (2000) Le teck dans le monde. Unasylva 201:3–13

    Google Scholar 

  • Pedersen AP, Hansen JK, Mitika JM, Msangi TH (2007) Growth, stem quality and age–age correlations in a Teak provenance trial in Tanzania. Silvae Genet 56:142–148

    Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. Cirad-Bios UPR Genetic Improvement of Vegetatively Propagated Crops, distributed by the authors at (http://darwin.cirad.fr/darwin).

  • Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  CAS  PubMed  Google Scholar 

  • Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–858

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genet 155:945–959

    CAS  Google Scholar 

  • Rance W, Monteuuis O (2004) Teak in Tanzania I. Overview of the context. Bois For Trop 279:5–10

    Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201

    Article  CAS  PubMed  Google Scholar 

  • Rao PS, Venkaiah K, Murali V, Murti SSN, Sattar SA (2001) Evaluation of international teak provenance trial plot in North East Andhra Pradesh. Indian For 127:415–422

    Google Scholar 

  • Rice WR (1989) Analysing tables of statistical tests. Evol 43:223–225

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shrestha MK, Volkaert H, Van der Straeten D (2005) Assessment of genetic diversity in Tectona grandis using amplified fragment length polymorphism markers. Can J For Res 35:1017–1022

    Article  CAS  Google Scholar 

  • Simatupang MH (2000) Some notes on the origin and establishment of teak forest (Tectona grandis L.F.) in Java, Indonesia. In: Hardiyanto EB (ed) Proceedings of third regional seminar on teak Potentials and opportunities in marketing and trade of plantation teak: Challenge for the new millennium, Yogyakarta, Indonesia, July 31–August 4, pp 91–98

  • Steffens DL, Sutter SL, Roemer SC (1993) An alternate universal forward primer for improved automated DNA sequencing of M13. Biotech 15:580–582

    CAS  Google Scholar 

  • Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194

    Article  CAS  PubMed  Google Scholar 

  • Tariel J (1966) Le Teck en Côte-d’Ivoire. Bois For Trop 107:27–47

    Google Scholar 

  • Verhaegen D, Ofori D, Fofana I, Poitel M, Vaillant A (2005) Development and characterization of microsatellite markers in Tectona grandis (Linn. f). Mol Ecol Notes 5:945–947

    Article  CAS  Google Scholar 

  • Wattier R, Engel CR, Saumitou-Laprade P, Valero M (1998) Short allele dominance as a source of heterozygote deficiency at microsatellite loci: experimental evidence at the dinucleotide locus Gv1CT in Gracilaria gracilis (Rhodophyta). Mol Ecol 7:1569–1573

    Article  CAS  Google Scholar 

  • White KJ (1991) Teak: some aspects of research and development. FAO Regional Office for Asia and the Pacific 1991, pp 1–53

  • Wood PJ (1967) Teak planting in Tanzania. World symposium on man-made forests and their industrial importance. FAO, Canberra, Australia 14–25 April 1967, pp 1631–1643

Download references

Acknowledgements

We would like to thank the European Commission project “Waft” (Inco-Dev ICA4-CT-2001-10090) that supported this research in Ghana, in Côte d’Ivoire and at CIRAD Bios (French Agricultural Research Centre for International Development) UR 39 laboratory. Many thanks to the SODEFOR (Forest Development Society BP 3770 Abidjan 01 Côte d’Ivoire) and FORIG (Forestry Research Institute of Ghana UST P.O Box 63 Kumasi Ghana), which supplied the teak plant material. Finally we wish to thank Claire Billot from CIRAD Bios for having allowed and facilitated access to the sequencer of the molecular biology laboratory, as well as Ronan Rivallan for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Verhaegen.

Additional information

Communicated by: A. Kremer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verhaegen, D., Fofana, I.J., Logossa, Z.A. et al. What is the genetic origin of teak (Tectona grandis L.) introduced in Africa and in Indonesia?. Tree Genetics & Genomes 6, 717–733 (2010). https://doi.org/10.1007/s11295-010-0286-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-010-0286-x

Keywords

Navigation