Skip to main content
Log in

Fine-scale gene flow and genetic structure in a relic Ulmus laevis population at its northern range

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Ulmus laevis is mainly distributed in Central and Eastern Europe. The present study took place in Southern Denmark, which together with southern Sweden and Finland, is the Northern range of the species distribution area. The study site (Krenkerup Haveskov) is the only presumed natural continuous population of U. laevis in Denmark. The forest is a part of a formerly larger carr forest. Scattered trees (U. laevis) are found in nearby woods. With seven polymorphic microsatellite loci, we revealed a fairly low genetic diversity in the parental generation with 2–7 alleles per locus and average gene diversity (He) = 0.5. There were no signs of a recent population decrease in U. laevis from Denmark. In contrast, the only known larger population of U. laevis from the Netherlands showed significant genetic signals of a recent bottleneck. The outcrossing rate was not significantly different from 1, indicating absence of self-pollination. Gene flow was found between the continuous population and trees in the nearby woods. We found significant spatial genetic structure which may be due to short dispersal distances of the winged fruits of U. laevis. Due to the low genetic diversity, the strong spatial genetic structure and the outcrossing nature of the species, it may be especially vulnerable to size reductions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andersen S Th, Havemann K (1976) Skærmelm på Krenkerup. Dan Dendrol Årsskrift 4(3):7–20, In Danish

    Google Scholar 

  • Bacles CFE, Burczyk J, Lowe AJ, Ennos RA (2005) Historical and contemporary mating patterns in remnant populations of the forest tree Fraxinus excelsior L. Evolution 59:979–990

    PubMed  Google Scholar 

  • Barrett SCH, Kohn J (1991) The genetic and evolutionary consequences of small population size in plants: implications for conservation. In: Falk D, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 3–30

    Google Scholar 

  • Bittencourt JVM, Sebbenn AM (2007) Patterns of pollen and seed dispersal in a small, fragmented population of the wind-pollinated tree Araucaria angustifolia in southern Brazil. Heredity 99:580–591

    Article  CAS  PubMed  Google Scholar 

  • Collada C, Fuentes-Utrilla P, Gil L, Cervera MT (2004) Characterization of microsatellite loci in Ulmus minor Miller and cross-amplification in U. glabra Hudson and U. laevis Pall. Mol Ecol 4:731–732

    Article  CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  Google Scholar 

  • Crow JF (1993) Mutation, mean fitness, and genetic load. Oxf Surv Evol Biol 9:3–42

    Google Scholar 

  • Debinski DM, Holt RD (2000) A survey and overview of habitat fragmentation experiments. Conserv Biol 14:342–355

    Article  Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction sites. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • Glémin S, Petit C, Maurice S, Mignot A (2008) Consequences of low mate availability in the rare self-incompatible species Brassica insularis. Conserv Biol 22:216–221

    Article  PubMed  Google Scholar 

  • Hamrick JL (2004) Response of forest trees to global environmental changes. For Ecol Manag 197:323–335

    Article  Google Scholar 

  • Hamrick JJ, Godt MJW (1989) Allozyme diversity in plant species. In: Brown ADH, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics: breeding and genetic resources. Sinauer, Sunderland, pp 43–63

    Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618

    Article  Google Scholar 

  • Hedrick PW (2004) Recent developments in conservation genetics. For Ecol Manag 197:3–19

    Article  Google Scholar 

  • Holderegger R, Häner R, Csencsics D, Angelone S, Hoebee SE (2008) S-allele diversity suggests no mate limitation in small populations of a self-incompatible plant. Evolution 62:2922–2928

    Article  PubMed  Google Scholar 

  • Jamieson A, Taylor CS (1997) Comparisons of three probability formulae for parentage exclusion. Anim Genet 28:397–400

    Article  CAS  PubMed  Google Scholar 

  • Jump AS, Peñuelas J (2006) Genetic effects of chronic habitat fragmentation in a wind-pollinated tree. Proc Natl Acad Sci USA 103:8096–8100

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski ST (2005) HP-Rare: a computer program for performing rarefaction on measures of allelic diversity. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kramer AT, Ison JL, Ashley MV, Howe HF (2008) The paradox of forest fragmentation genetics. Conserv Biol 22:878–885

    Article  PubMed  Google Scholar 

  • Ledig FT (1992) Human impacts on genetic diversity in forest ecosystems. Oikos 63:87–108

    Article  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understorey shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Machon N, Lefranc M, Bilger I, Mazer SJ, Sarr A (1997) Allozyme variation in Ulmus species from France: analysis of differentiation. Heredity 78:12–20

    Article  CAS  PubMed  Google Scholar 

  • Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  CAS  PubMed  Google Scholar 

  • Mittempergher L, La Porta N (1991) Hybridization studies in the Eurasian species of elm (Ulmus spp.). Silvae Genet 40:237–243

    Google Scholar 

  • Muir G, Lowe AJ, Fleming CC, Vogl C (2004) High nuclear genetic diversity, high levels of outcrossing and low differentiation among remnant populations of Quercus patraea at the margin of its range in Ireland. Ann Bot 93:691–697

    Article  CAS  PubMed  Google Scholar 

  • Nielsen LR, Kjær ED (2010) Gene flow and mating patterns in individuals of wych elm (Ulmus glabra) in forest and open land after the influence of Dutch elm disease. Conserv Genet 11:257–268

    Google Scholar 

  • Raymond M, Rousset F (1995) Genepop (version 1.2), population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reinartz JA, Les DH (1994) Bottleneck-induced dissolution of self-incompatibility and breeding system consequences in Aster furcatus (Asteraceae). Am J Bot 81:446–455

    Article  Google Scholar 

  • Ritland K (1989) Correlated matings in the partial selfer Mimulus guttatus. Evolution 43:848–859

    Article  Google Scholar 

  • Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res 67:175–185

    Article  Google Scholar 

  • Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88:221–228

    Article  PubMed  Google Scholar 

  • Robledo-Arnuncio JJ, Austerlitz F, Smouse PE (2007) POLDISP: a software package for indirect estimation of contemporary pollen dispersal. Mol Ecol Notes 7:763–766

    Article  Google Scholar 

  • Smouse PE, Dyer RJ, Westfall RD, Sork VL (2001) Two-generation analysis of pollen flow across a landscape. I. Male gamete heterogeneity among females. Evolution 55:260–271

    CAS  PubMed  Google Scholar 

  • Stoltze M, Pihl S (ed.) (1998) Rødliste 1997 over planter og dyr i Danmark. Miljø- og Energiministeriet, Danmarks Miljøundersøgelser og Skov-og Naturstyrelsen. In Danish, with English summary

  • Vakkari P, Rusanen M, Kärkkäinen K (2009) High genetic differentiation in marginal populations of European white elm (Ulmus laevis). Silv Fenn 43:185–196

    Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    Article  CAS  PubMed  Google Scholar 

  • White GM, Boshier DH, Powell W (2002) Increased pollen flow counteracts fragmentation in a tropical dry forest: an example from Swietenia humilis Zuccarini. Proc Natl Acad Sci USA 99:2038–2042

    Article  CAS  PubMed  Google Scholar 

  • Whiteley R (2004) Quantitative and molecular genetic variation in Ulmus laevis Pall. PhD thesis. Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Whiteley RE, Black-Samuelsson S, Clapham D (2003) Development of microsatellite markers for the European white elm (Ulmus laevis Pall.) and cross-species amplification within the genus Ulmus. Mol Ecol 3:598–600

    Article  CAS  Google Scholar 

  • Whiteley RE, Black-Samuelsson S, Demesure-Musch B (2004) Nuclear and chloroplast DNA variation in the European white elm (Ulmus laevis Pall.). In: Whiteley R (ed) Quantitative and molecular genetic variation in Ulmus laevis Pall. Doctoral thesis. Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Zalapa JE, Brunet J, Guries RP (2008) Isolation and characterization of microsatellite markers for red elm (Ulmus rubra Muhl.) and cross-species amplification with Siberian elm (Ulmus pumila L.). Mol Ecol Notes 8:109–112

    CAS  Google Scholar 

Download references

Acknowledgements

We kindly thank the Villum Kann-Rasmussen foundation and Godfred Birkedal Hartmanns Familiefond for financial support. Peter Friis Møller provided valuable help in identifying the native Danish U. laevis population. Patrick Reventlow-Grinling is thanked for allowing us to work in Krenkerup Haveskov. Viggo Jensen and Lars Nørgaard Hansen are acknowledged for valuable technical assistance. The staff at the Arboretum, Ole Byrgesen and Kristian Stousgaard Jakobsen, in particular, is thanked for competent help with germinating and growing the offspring of U. laevis. Ole Kim Hansen is thanked for technical advice during the laboratory work. Joukje Buiteveld is thanked for providing us with DNA samples from the Netherlands, for describing the population and for valuable inputs to the paper. Hans R. Siegismund is thanked for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lene R. Nielsen.

Additional information

Communicated by O. Savolainen

Supplementary material

Below is the link to the electronic supplementary material.

Table 1

Allele frequencies at seven loci in parental (P) and offspring (O) generations of U. laevis from Denmark (forest and group) and The Netherlands. n = sample size (DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, L.R., Kjær, E.D. Fine-scale gene flow and genetic structure in a relic Ulmus laevis population at its northern range. Tree Genetics & Genomes 6, 643–649 (2010). https://doi.org/10.1007/s11295-010-0280-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-010-0280-3

Keywords

Navigation