Skip to main content
Log in

The emerging role of genomic tools in mulberry (Morus) genetic improvement

  • Opinion Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Mulberry (Morus L) is one of the economically important trees that have a long history of extensive cultivation in Asia. Mulberry leaf is the sole food for the silkworm Bombyx mori; hence, the sustainability of the sericulture industry is dependent on the continuous supply of nutritious mulberry leaf. Genetic improvement of mulberry for leaf yield, leaf nutritional contents, and adaptability has great socioeconomical importance because the sericulture is the backbone of rutal economy in several Asian countries. Much effort has been made on germplasm collection, characterization, and varietal development through conventional methods. However, the complexity of important agronomic traits, the substantial lag time between germination and sexual maturity, the absence of inbred lines, and the outbreeding nature of mulberry delay the genetic improvement via conventional breeding techniques. In this postgenomic era, having the next generation sequencing facilities in its fold, it is possible to integrate modern genomic tools with conventional breeding techniques to dissect the complex traits into their individual components to gain better control over them. In mulberry, such efforts are lacking. This paper, therefore, summarizes the current position of genetic and genomics research in mulberry and discusses the directions for future research, utilizing the emerging technologies in molecular markers, association genetics, quantitative trait locus mapping, transcriptomics, metabolomics, marker-assisted selection breeding, and transgenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agarwal R, Hendre UD, PS SA, Singh L (2004) Isolation and characterization of six novel microsatellite markers for mulberry (Morus indica). Mol Ecol Notes 4:477–479

    Google Scholar 

  • Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965

    PubMed  CAS  Google Scholar 

  • Awasthi AK, Nagaraja GM, Naik GV, Kanginakudru S, Thangavelu K, Nagaraju J (2004) Genetic diversity in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC Genet 5:1, available at http://www.biomedcentral.com/1471-2156/5/1

    PubMed  Google Scholar 

  • Banerjee R, Roychowdhuri S, Sau H, Das BK, Ghosh P, Saratchandra B (2007) Genetic diversity and interrelationship among mulberry genotypes. J Genet Genomics 34:691–697

    PubMed  Google Scholar 

  • Basavaiah, Dandin SB, Rajan MV (1989) Microsporogenesis in Hexaploid Morus serrata Roxb. Cytologia 54:747–751

    Google Scholar 

  • Basten CJ, Weir BS, Zeng Z-B (1998) QTL cartographer a reference manual and tutorial for QTL mapping. Department of Statistics North Carolina State University, Raleigh

    Google Scholar 

  • Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Patterson AH (ed) Molecular dissection of complex traits. CRC, Boca Raton, pp 145–162

    Google Scholar 

  • Benavides JE, Lachaux M, Fuentes M (1994) Efecto de la aplicación de estiércol de cabra en el suelo sobre la calidad y producción de biomasa de Morera (Morus sp.). In: Benavides JE (ed) Arboles y arbustos forrajeros en América Central, vol II. CATIE, Turrialba, pp 495–514

    Google Scholar 

  • Bhatnagar S, Kapur A, Khurana P (2002) Evaluation of parameters for high efficiency gene transfer via particle bombardment in Indian mulberry, Morus indica cv. K2. Indian J Expt Biol 40:1387–1392

    CAS  Google Scholar 

  • Bhatnagar S, Kapur A, Khurana P (2003) Evaluation of parameters for high efficiency gene transfer via Agrobacterium tumefaciens and production of transformants in Indian mulberry, Morus indica cv. K2. Plant Biotechnol 21:1–8

    Google Scholar 

  • Bhattacharya E, Ranade SA (2001) Molecular distinction among varieties of Mulberry using RAPD and DAMD profiles. BMC Plant Biol 3:1, Available at http://www.biomedcentral.com/1471-2229/1/3

    Google Scholar 

  • Bindroo BB, Tikku AK, Pandit RK (1990) Variation of some metric traits in mulberry varieties. Indian For 116:320–324

    Google Scholar 

  • Bindroo BB, Fotadar RK, Dhar A (1996) Propagation of mulberry under subtropical conditions. Indian Silk 34:11–15

    Google Scholar 

  • Botton A, Barcaccia G, Cappellozza S, Tos RD, Bonghi C, Ramina A (2005) DNA fingerprinting sheds light on the origin of introduced mulberry (Morus spp.) accessions in Italy. Genet Resour Crop Evol 52:181–192

    CAS  Google Scholar 

  • Bradshaw HD Jr (1996) Molecular genetics of Populus. In: Stettler RF, Bradshaw HD Jr, Heilman PE, Hinckley TM (eds) Biology of Populus and its implications for management and conservation. NRC, Ottawa, pp 183–199

    Google Scholar 

  • Busov VB, Brunner AM, Meilan R, Filichkin S, Ganio L, Gandhi S, Strauss SH (2005) Genetic transformation: a powerful tool for dissection of adaptive traits in trees. New Phytol 167:9–18

    PubMed  CAS  Google Scholar 

  • Byrne M, Murrell JC, Owen JV, Williams ER, Moran GF (1997) Mapping of quantitative trait loci influencing frost tolerance in Eucalyptus nitens. Theor Appl Genet 95:975–979

    CAS  Google Scholar 

  • CBOL plant working group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797

    Google Scholar 

  • Capell T, Christou P (2004) Progress in plant metabolic engineering. Curr Opin Biotech 15:148–153

    PubMed  CAS  Google Scholar 

  • Chagne D, Brown G, Lalanne C, Madur D, Pot D, Neale D, Plomion C (2003) Comparative genome and QTL mapping between maritime and loblolly pines. Mol Breed 12:185–195

    CAS  Google Scholar 

  • Chatterjee SN, Nagaraja GM, Srivastava PP, Naik G (2004) Morphological and molecular variation of Morus laevigata in India. Genetica 39:1612–1624

    Google Scholar 

  • Chesler EJ (2007) Combining quantitative trait and gene-expression data. In: Barnes MR (ed) Bioinformatics for genetics: a bioinformatics primer for the analysis of genetic data. Wiley, Chichester, pp 389–402

    Google Scholar 

  • Coffman CJ, Doerge RW, Wayne ML, McIntyre LM (2003) Intersection tests for single marker QTL analysis can be more powerful than two marker QTL analysis. BMC Genet 4:10

    PubMed  Google Scholar 

  • Collard BCY, Pang ECK, Jahufer MZZ, Brouwer JB (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    CAS  Google Scholar 

  • Collins FS, Guyer MS, Chravarti A (1997) Variations on a theme: cataloging human DNA sequence variation. Science 128:1580–1581

    Google Scholar 

  • Cruzen MB, Arnold ML, Carney SE, Wollenberg KR (1993) cpDNA inheritance in interspecific crosses and evolutionary inference in Louisiana Irises. Am J Bot 80:344–350

    Google Scholar 

  • Dandin SB, Kumar R, Ravindran S, Jolly MS (1987) Crossability studies in mulberry. Indian J Seric 26:1–4

    Google Scholar 

  • Das BC (1984) Mulberry varieties, exploitations and pathology. Sericologia 24:369–372

    Google Scholar 

  • Datta RK (2000) Mulberry cultivation and utilization in India. FAO Electronic conference on mulberry for animal production (Morus-L). http://www.fao.org/DOCREP/005/X9895E/x9895e04.htm#TopOfPage

  • de Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CARTHAGENE: multipopulation integrated genetic and radiated hybrid mapping. Bioinformatics 21:1703–1704

    PubMed  Google Scholar 

  • Dwivedi NK, Suryanarayana N, Susheelamma BN, Sikdar AK, Jolly MS (1989) Interspecific hybridization studies in mulberry. Sericologia 29:147–149

    Google Scholar 

  • FAO (2003) Conservation status of sericultural germplasm resources in the world-1. Conservation status of mulberry (Morus spp.) genetic resources in the world. Food and Agricultural Organization of the United Nation (FAO), FAO Corporate Document Repository, Rome, Compiled by Kee-Wook Sohn. http://www.fao.org/DOCREP/005/AD107E/AD107E00.HTM

  • Fernie AR, Schauer N (2008) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25:39–48

    PubMed  Google Scholar 

  • Freeman JS, Potts BM, Vaillancourt RE (2008a) Few Mendelian genes underlie the quantitative response of a forest tree, Eucalyptus globules, to a natural fungal epidemic. Genetics 178:563–571

    PubMed  Google Scholar 

  • Freeman JS, O’Reilly-Wapstra JM, Vaillancourt RE, Wiggins N, Potts BM (2008b) Quantitative trait loci for key defensive compounds affecting herbivory of Eucalyptus in Australia. New Phytol 178:846–851

    PubMed  CAS  Google Scholar 

  • Freeman JS, Whittock SP, Potts BM, Vaillancourt RE (2009) QTL influencing growth and wood properties in Eucalyptus globules. Tree Genet Genome 5:713–722. doi:10.1007/s11295-009-0222-0

    Google Scholar 

  • Fukuda T, Sudo M, Matuda M, Hayashi T, Kurose T, Florrin YHM (1959) Formation of silk protein during the growth of silkworm larvae Bombyx mori L. In: Proceeding of the 4th Intl. Cong. Biochemistry (Insect) vol. 12, pp 90–112

  • Gilad Y, Rifkin SA, Pritchanrd JK (2008) Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet 24:408–415

    PubMed  CAS  Google Scholar 

  • Gonzalez-Martinez SC, Wheeler NC, Ersoz E, Nelson CD, Neale DB (2007) Association genetics in Pinus taeda L. I. wood property traits. Genetics 175:399–409

    PubMed  Google Scholar 

  • Gonzalez-Martinez SC, Huber D, Ersoz E, Davis JM, Neale DB (2008) Association genetics in Pinus taeda L. II. Carbon isotope discrimination. Heredity 101:19–26

    PubMed  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed  CAS  Google Scholar 

  • Gratapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytol 179:911–929

    Google Scholar 

  • Grattapaglia D, Bertolucci FLG, Penchel R, Sederoff R (1996) Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. Genetics 144:1205–1214

    PubMed  CAS  Google Scholar 

  • Grattapaglia D, Plomion C, Krist M, Sedroff RR (2009) Genomics of growth traits in forest trees. Curr Opin Plant Biol 12:1–9

    Google Scholar 

  • Groover A, Devey M, Fiddler T, Lee J, Megra WR, Mitchet-Olds T, Herman B, Vujere S, Williams C, Neale D (1994) Identification of quantitative trait loci influencing wood specific gravity in an out bred pedigree of loblolly pine. Genetics 138:1293–1300

    PubMed  CAS  Google Scholar 

  • Hall D, Luquez V, Garcia VM, St Onge KR, Jansson S, Ingvarsson PK (2007) Adaptive population differentiation in phenology across a latitudinal gradient in European aspen (Populus tremula L.): a comparison of neutral markers, candidate genes and phenotypic traits. Evolution 61:2849–2860

    PubMed  Google Scholar 

  • Hansen BG, Halkier BA, Kliebenstein DJ (2008) Identifying the molecular basis of QTLs: eQTLs add new dimension. Trends Plant Sci 13:72–77

    PubMed  CAS  Google Scholar 

  • Hospital F (2009) Challenges for effective marker-assisted selection in plants. Genetics 136:303–310

    Google Scholar 

  • Hou YJ (1994) Mulberry breeding. Sericulture Department, Zhejiang Agriculture University, Hangzhou, p 4

    Google Scholar 

  • Jourjon MF, Jasson S, Marcel J, Ngom B, Mangin B (2005) MCQTL: multi-allelic QTL mapping in multi-cross design. Bioinformatics 21:128–130

    PubMed  CAS  Google Scholar 

  • Kafkas S, Ozgen M, Dogan Y, Ozcan B, Ercisli S, Serce S (2008) Molecular characterization of mulberry accessions in Turkey by AFLP markers. J Am Soc Hortic Sci 133:593–597

    Google Scholar 

  • Kar PK, Srivastava PP, Awasthi AK, Raje Urs S (2007) Genetic variability and association of ISSR markers with some biochemical traits in mulberry (Morus spp.) genetic resources available in India. Tree Genet Genomes 4:75–83

    Google Scholar 

  • Kenis K, Keulemans J, Davey MW (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genomes 4:647–661

    Google Scholar 

  • Koebner RMD, Summers W (2003) 21st century wheat breeding: plot selection of plate detection? Trends Biotechnol 21:59–63

    PubMed  CAS  Google Scholar 

  • Koidzumi G (1917) Taxonomy and phytogeography of the genus Morus. Bull Seric Exp Station Tokyo (Japan) 3:1–62

    Google Scholar 

  • Krist M, Myburg A, De Leon JPG, Krist ME, Scott J, Sederoff R (2004) Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of Eucalyptus. Plant Physiol 135:2368–2378

    Google Scholar 

  • Krutovsky KV, Troggio M, Brown GR, Jermstad KD, Neale DB (2004) Comparative mapping in the Pinaceae. Genetics 168:447–461

    PubMed  CAS  Google Scholar 

  • Lal S, Gulyani V, Khurana P (2008) Over expression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res 17:651–663

    PubMed  CAS  Google Scholar 

  • Lal S, Ravi V, Khurana JP, Khurana P (2009) Repertoire of leaf expressed sequence tags (ESTs) and partial characterization of stress-related and membrane transporter genes from mulberry (Morus indica L.). Tree Genet Genome 5:359–374

    Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    PubMed  CAS  Google Scholar 

  • Laurentin H, Ratzinger A, Karlovsky P (2008) Relationship between metabolic and genomic diversity in sesame (Sesamum indicum L.). BMC Genomics 9:250

    PubMed  Google Scholar 

  • Lin JZ, Ritland K (1996) The effects of selective genotyping on estimates of the proportion of recombination between linked quantitative trait loci. Theor Appl Genet 93:1261–1266

    Google Scholar 

  • Lou CF, Zhang YZ, Zhou JM (1998) Polymorphisms of genomic DNA in parents and their resulting hybrids in mulberry Morus. Sericologia 38:437–445

    Google Scholar 

  • Machii H, Koyama A, Yamanouchi H, Katagiri K (1997) Manual for the characterization and evaluation of mulberry genetic resources. Misc Publ Natl Inst Seric Entomol Sci 22:105–124

    Google Scholar 

  • Machii H, Koyama A, Yamanouchi H (1999) A list of genetic mulberry resources maintained at National Institute of Sericultural and Entomological Science. Misc Publ Natl Seric Entomol Sci 26:1–77 (in Japanese)

    Google Scholar 

  • Machii H, Koyama A, Yamanouchi H, Matsumoto K, Kobayashi S, Katagiri K (2000) A list of morphological and agronomical traits of mulberry genetic resources. Misc Publ Natl Inst Seric Entomol Sci 29:1–307

    Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    PubMed  CAS  Google Scholar 

  • Maode Y, Zhonghuai X, Lichun F, Yifu K, Xiaoyong Z, Chengjun J (1996) The discovery and study on a natural haploid Morus notabilis Schneid. Acta Sericol Sin 22:67–71

    Google Scholar 

  • Marcano M, Morales S, Hoyer MT, Courtois B, Risterucci AM, Fouet O, Pugh T, Cros E, Gonzalez V, Dagert M, Lanaud C (2009) A genome wide admixture mapping study for yield factors and morphological traits in a cultivated cocoa (Theobroma cacao L.) population. Tree Genet Genomes 5:329–337

    Google Scholar 

  • Marques CM, Carocha VJ, deSa ARP, Oliveira MR, Pires AM, Sedroff R, Borralho NMG (2005) Verification of QTL linked markers for propagation traits in Eucalyptus. Tree Genet Genomes 1:103–108

    Google Scholar 

  • Misilamani S, Reddy AR, Sarkar A, Sreeniva BT, Camle CK (2000) Heritability and genetic advance of quantitative traits in mulberry (Morus spp.). Indian J Seric 39:16–20

    Google Scholar 

  • Myburg AA, Griffin AR, Sederoff RR, Whetten RW (2003) Comparative genetic linkage maps of Eucalyptus grandis, Eucalyptus globulus and their F(1) hybrid based on a double pseudo-backcross mapping approach. Theoret Appl Genet 107:1028–1042

    CAS  Google Scholar 

  • Namround MC, Beaulieu J, Juge N, Laroche J, Bousquet J (2008) Scanning the genome for gene single nucleotide polymorphisms involved in adaptive population differentiation in white spruce. Mol Ecol 17:3599–3613

    Google Scholar 

  • Neale DB (2007) Genomics to tree breeding and forest health. Curr Opin Genet Dev 17:539–544

    PubMed  CAS  Google Scholar 

  • Nelson JC (1997) QGENE: software for marker-based analysis and breeding. Mol Breed 3:239–245

    CAS  Google Scholar 

  • Nordborg M, Tavaré S (2002) Linkage disequilibrium: what history has to tell us. Trends Genet 18:83–90

    PubMed  CAS  Google Scholar 

  • Novaes E, Osorio L, Drost DR, Miles BL, Boaventura-Novaes CRD, Benedict C, Dervinis C, Qibin Yu Q, Sykes R, Davis M, Martin TA, Peter GF, Kirst M (2009) Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytol 182:878–890

    Google Scholar 

  • Pan YL (2000) Progress and prospect of germplasm resources and breeding of mulberry. Acta Sericol Sin 26:1–8

    Google Scholar 

  • Pot D, Rodrigues JC, Rozenberg P, Chantre G, Tibbits J, Cahalan C, Pichavant F, Plomion C (2006) QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait). Tree Genet Genomes 2:10–24

    Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. American J Hum Genet 67:170–181

    CAS  Google Scholar 

  • Rae AM, Ferris R, Tallis MJ, Taylor G (2006) Elucidating genomic regions determining enhanced leaf growth and delayed senescence in elevated CO2. Plant Cell Environ 29:1730–17741

    PubMed  CAS  Google Scholar 

  • Rae AM, Tricker PJ, Bunn SM, Taylor G (2007) Adaptation of tree growth to elevated CO2: quantitative trait loci for biomass in Populus. New Phytol 175:59–69

    PubMed  CAS  Google Scholar 

  • Rae AM, Pinel MPC, Bastien C, Sabatti M, Street NR, Tucker J, Dixon C, Marron N, Dillen SJ, Taylor G (2008) QTL for yield in bioenergy Populus: identifying GxE interactions from growth at three contrasting sites. Tree Genet Genomes 4:977–112

    Google Scholar 

  • Rajan MV, Chturvedi HK, Sarkar A (1997) Multivariate analysis as an aid to genotypic selection for breeding in mulberry. Indian J Seric 36:111–115

    Google Scholar 

  • Rao A (2003) Conservation status of mulberry genetic resources in India. In: Conservation status of sericulture germplasm resources in the world - I. Conservation status of mulberry (Morus spp.) Genetic resources in the world. Compiled by Kee-Wook Sohn. http://www.fao.org/docrep/005/ad107e/ad107e0m.htm#TopOfPage

  • Ravi V, Khurana JP, Tyagi AK, Khurana P (2006) The chloroplast genome of mulberry: complete nucleotide sequence, gene organization and comparative analysis. Tree Genet Genomes 3:49–59

    Google Scholar 

  • Riedel M, Riederer M, Becker D, Herran A, Kullaya A, Arana-López G, Peña-Rodríguez L, Billotte N, Sniady V, Rohde W, Ritter E (2009) Cuticular wax composition in Cocos nucifera L.: physicochemical analysis of wax components and mapping of their QTLs onto the coconut molecular linkage map. Tree Genet Genomes 5:53–69

    Google Scholar 

  • Rieder MJ, Taylor SL, Tobe VO, Nickerson DA (1998) Automating the identification of DNA variations using quality-based fluorescence re-sequencing: analysis of the human mitochondrial genome. Nucleic Acids Res 26:967–973

    PubMed  CAS  Google Scholar 

  • Sahu PK, Yadav BRD, Saratchandra B (1995) Evaluation of yield components in mulberry germplasm varieties. Acta Botanica 23:191–197

    Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    PubMed  CAS  Google Scholar 

  • Sanchez MD (2000a) World distribution and utilization of mulberry, potential for animal feeding. FAO Electronic conference on mulberry for animal production (Morus-L). http://www.fao.org/DOCREP/005/X9895E/x9895e02.htm

  • Sanchez MD (2000b) Mulberry: an exceptional forage available almost worldwide. World Animal Review 93(1), FAO, Rome

  • Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam A, Kopka J, Willmitzer L, Zamir D, Fernie AR (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454

    PubMed  CAS  Google Scholar 

  • Schauer N, Semel Y, Balbo I, Steinfath M, Repsilber D, Selbig J, Pleban T, Zamir D, Fernie AR (2008) Mode of inheritance of primary metabolic traits in tomato. Plant Cell 20:509–523

    PubMed  CAS  Google Scholar 

  • Seaton G, Haley CS, Knott SA, Kearsey M, Visscher PM (2002) QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18:339–340

    PubMed  CAS  Google Scholar 

  • Sharma A, Sharma R, Machii H (2000) Assessment of genetic diversity in a Morus germplasm collection using fluorescence-based AFLP markers. Theor Appl Genet 101:1049–1055

    CAS  Google Scholar 

  • Soufleros EH, Mygdalia AS, Natskoulis P (2004) Characterization and safety evaluation of the traditional Greek fruit distillate ‘‘Mouro’’ by flavor compounds and mineral analysis. Food Chem 86:625–636

    CAS  Google Scholar 

  • Srivastava PP, Vijayan K, Awasthi AK, Saratchandra B (2004) Genetic analysis of Morus alba through RAPD and ISSR markers. Indian J Biotechnol 3:527–532

    CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744

    CAS  Google Scholar 

  • Stoeckli S, Mody K, Gessler C, Patocchi A, Jermini M, Dorn S (2008) QTL analysis for aphid resistance and growth traits in apple. Tree Genet Genomes 4:833–847

    Google Scholar 

  • Street NR, Skogstrom O, Sjodin A, Tucker J, Rodriguez-Acosta M, Nilsson P, Janson S, Taylor G (2006) The genetics and genomics of drought response in Populus. Plant J 48:321–341

    CAS  Google Scholar 

  • Sujathamma P, Dandin SB (1998) Evaluation of mulberry genotypes for propagation parameters. Indian J Seric 37:133–136

    Google Scholar 

  • Suryanarayana N, Rao RDM, Reddy MP (2002) Genetic divergence in mulberry (Morus spp.). Indian J Seric 41:2–11

    Google Scholar 

  • Susheelamma BN, Jolly MS (1986) Evaluation of morpho-physiological parameters associated with drought resistance in mulberry. Indian J Seric 25:6–14

    Google Scholar 

  • Susheelamma BN, Jolly MS, Giridhar K, Sengupta K (1990) Evaluation of germplasm genotypes for drought resistance in mulberry. Sericologia 30:327–341

    Google Scholar 

  • Thamarus KA, Groom K, Murrell J, Byrne M, Moran GF (2002) A genetic linkage map for Eucalyptus globulus with candidate loci for wood, fibre, and floral traits. Theor Appl Genet 104:379–387

    PubMed  CAS  Google Scholar 

  • Tikader A, Dandin SB (2001) Breeding behaviour of some wild mulberry. Indian Silk 40:9–10

    Google Scholar 

  • Tikader A, Dandin SB (2006) Maintenance and utilization of mulberry (Morus spp.) genetic resources. In: Proceedings of the Reports at the International Jubilee Scientific Conference Problems of maintenance and Utilization of Mulberry and Silkworm Genetic Resources, Sept, 25–2 9, 2006, Vratsa, Bulgaria

  • Tikader A, Dandin SB (2007) Pre-breeding efforts to utilize two wild Morus species. Curr Sci 92:1072–1076

    Google Scholar 

  • Tikader A, Kamble CK (2008a) Studies on variability of indigenous mulberry germplasm on growth and leaf yield. Pertanika J Trop Agric Sci 31:163–170

    Google Scholar 

  • Tikader A, Kamble CK (2008b) Mulberry wild species in India and their use in crop improvement – a review. Australian J Crop Science 2:64–72

    Google Scholar 

  • Tikader A, Kamble CK (2009) Development of core collection for perennial mulberry (Morus spp.) germplasm. Pertanika J Sci Technol 17:43–51

    Google Scholar 

  • Tikader A, Rao AA, Thangavelu K (2003) Genetic divergence in exotic mulberry (Morus spp.) germplasm. Sericologia 43:495–501

    Google Scholar 

  • Tikader A, Vijayan K, Kamble CK (2009) Conservation and management of mulberry germplasm through biomolecular approaches—a review. Biotechnol Mol Biol Rev 3:92–104

    Google Scholar 

  • Tutin GT (1996) Morus L. In: Tutin GT, Burges NA, Chater AO, Edmondson JR, Heywood VH, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europa, Psilotaceae to Platanaceae, vol 1, 2nd edn. Cambridge University Press, Australia

    Google Scholar 

  • Tzenov PI (2002) Conservation status of mulberry germplasm resources in Bulgaria. Paper contributed to expert consultation on promotion of global exchange of sericulture germplasm satellite session of XIXth ISC Congress, September 21st–25th Bangkok, Thailand. http://www.fao.org/DOCREP/ 005/AD107E/ad107e01.htm

  • Ukrainetz NK, Ritland K, Mansfield SD (2008) Identification of quantitative trait loci for wood quality and growth across eight full-sib coastal Douglas-fir families. Tree Genet Genomes 4:159–170

    Google Scholar 

  • Utz HF, Melchinger AE (1995) PLABQTL: a computer program to map QTL. Version 1.0. Institute of plant breeding, seed science and population genetics. University of Hohenheim, Stuttgart

    Google Scholar 

  • Vaillancourt RE, Pottis BM, Mamson A, Eldrige T, Reid JB (1995) Using RAPDs to detect QTLs in an interespecific F2 hybrid of Eucalyptus. In: Potts BM, Borralho NMG, Reid JB, Cromer RN, Tibbits WN, Raymond CA (eds) Eucalyptus plantations: improving fibre yield and quality. CRCTHF-IUFRO Conference. (19th–24th February, 1995, Hobart, Australia). CRC for Temperate Hardwood Forestry, vol. 1, pp 430–431

  • Van Ooijen JW (2004) MapQTL ® 5, software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Varshney A, Mohapatra T, Sharma RP (2004) Molecular mapping and marker assisted selection of traits for crop improvement. In: Srivastava PS, Narula A, Srivastava S (eds) Plant biotechnology and molecular markers. Kluwer, Dordrecht, pp 289–330

    Google Scholar 

  • Venkateswarlu M, Raje Urs S, Nath BS, Shashidhar HE, Maheswaran M, Veeraiah TM, Sabitha MG (2006) A first genetic linkage map of mulberry (Morus spp.) using RAPD, ISSR, and SSR markers and pseudo testcross mapping strategy. Tree Genet Genomes 3:15–24

    Google Scholar 

  • Vijayan K (2004) Genetic relationships of Japanese and Indian mulberry (Morus spp.) revealed by DNA fingerprinting. Plant Sys Evol 243:221–232

    CAS  Google Scholar 

  • Vijayan K (2009) Approaches for enhancing salt tolerance in mulberry (Morus L). Plant Omics 2:41–59

    CAS  Google Scholar 

  • Vijayan K, Chatterjee SN (2003) ISSR profiling of Indian cultivars of mulberry (Morus spp.) and its relevance to breeding programs. Euphytica 131:53–63

    CAS  Google Scholar 

  • Vijayan K, Chauhan S, Chakraborti DNK, SP RBN (1997a) Leaf yield component combining abilities in mulberry (Morus spp). Euphytica 98:47–52

    Google Scholar 

  • Vijayan K, Tikader A, Das KK, Chakraborti SP, Roy BN (1997b) Correlation studies in mulberry (Morus spp.). Indian J Genet Breed 57:455–460

    Google Scholar 

  • Vijayan K, Das KK, Chakraborti SP, Roy BN (1997c) Heterosis for leaf yield and related characters in mulberry. Indian J Genet Plant Breed 583:369–374

    Google Scholar 

  • Vijayan K, Das KK, Doss SG, Chakraborti SP, Roy BN (1999a) Genetic divergence in indigenous mulberry. Indian J Agric Sci 69:851–853

    Google Scholar 

  • Vijayan K, Sahu PK, Chakraborti SP, Roy BN (1999b) Evaluation of tetraploid germplasm varieties for triploid breeding in Mulberry. Indian J Genet Plant Breed 59:515–522

    Google Scholar 

  • Vijayan K, Chakraborti SP, Ghosh PD (2003) In vitro screening of axillary buds for salinity tolerance in mulberry genotypes. Plant Cell Rep 22:350–357

    PubMed  CAS  Google Scholar 

  • Vijayan K, Chakraborti SP, Ghosh PD (2004a) Screening of Mulberry (Morus spp.) for salinity tolerance through in vitro seed germination. Indian J Biotechnol 3:47–51

    Google Scholar 

  • Vijayan K, Awasthi AK, Srivastava PP, Saratchandra B (2004b) Genetic analysis of Indian mulberry varieties through molecular markers. Hereditas 141:8–14

    PubMed  CAS  Google Scholar 

  • Vijayan K, Srivastava PP, Awasthi AK (2004c) Analysis of phylogenetic relationship among five mulberry (Morus) species using molecular markers. Genome 47:439–448

    PubMed  CAS  Google Scholar 

  • Vijayan K, Nair CV, Chatterjee SN (2005) Molecular characterization of mulberry genetic resources indigenous to India. Genet Resour Crop Evol 52:77–86

    CAS  Google Scholar 

  • Vijayan K, Srivastava PP, Nair CV, Tikader A, Awasthi AK, Raje Urs S (2006a) Molecular characterization and identification of markers associated with leaf yield traits in mulberry using ISSR markers. Plant Breed 125:298–301

    CAS  Google Scholar 

  • Vijayan K, Tikader A, Kar PK, Srivastava PP, Awasthi AK, Thangavelu K, Saratchandra B (2006b) Assessment of genetic relationships between wild and cultivated mulberry (Morus) species using PCR based markers. Genet Resour Crop Evol 53:873–882

    CAS  Google Scholar 

  • Vijayan K, Chakraborti SP, Doss SG, Ghosh PD, Ercisli S (2008) Combining ability for morphological and biochemical characters in mulberry (Morus spp.) under salinity stress. Int J Indust Entomol 16:67–74

    Google Scholar 

  • Vijayan K, Nair CV, Chatterjee SN (2009) Diversification of mulberry (Morus indica var. S36)—a vegetatively propagated tree species. Caspian J Env Sci 7:23–30

    Google Scholar 

  • Wang ZW, Yu MD (2001) AFLP analysis of genetic background of polyploid breeding materials of mulberry. Acta Sericologic Sin 27:170–176

    CAS  Google Scholar 

  • Wang H, Lou C, Zhang Y, Tan J, Jiao F (2003) Preliminary report on Oryza cystatin gene transferring into mulberry and production of transgenic plants. Acta Sericologic Sin 29:291–294

    Google Scholar 

  • Waterhouse PM, Helliwell CA (2003) Exploring plant genomics by RNA-induced gene silencing. Nat Rev Genet 4:29–38

    PubMed  CAS  Google Scholar 

  • Xiang Z, Zhang Z, Yu M (1995) A preliminary report on the application of RAPD in systematics of Morus alba. Acta Sericol Sin 21:203–207

    Google Scholar 

  • Yadav DBR, Sukumar J, Prasad KV (1993) Screening of potential resistance in the mulberry to leaf spot (Cercospora moricola) disease. Sericologia 33:81–90

    Google Scholar 

  • Yokoyama T (1962) Synthesized science of sericulture. Japan, pp 39–46

  • Yu Q, Li B, Nelson C, McKeand S, Batista V, Mullin T (2006) Association of the cad-n1 allele with increased stem growth and wood density in full-sib families of loblolly pine. Tree Genet Genomics 2:98–108

    Google Scholar 

  • Yua XH, Liua H, Tong L (2008) Feeding scenario of the silkworm Bombyx mori, L. in the BLSS. Acta Astronautica 63:1086–1092

    Google Scholar 

  • Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhang D, Zhang Z, Yang K, Li B (2004) Genetic mapping in (Populus tomentosa × Populus bolleana) and P. tomentosa Carr. using AFLP markers. Theoret Appl Genet 108:657–662

    CAS  Google Scholar 

  • Zhang B, Tong C, Yin T, Zhang X, Zhuge Q, Huang M, Wang M, Wu R (2009a) Detection of quantitative trait loci influencing growth trajectories of adventitious roots in Populus using functional mapping. Tree Genet Genomes 5:539–552

    Google Scholar 

  • Zhang G, Sebolt AM, Sooriyapathirana SS, Wang D, Bink MCAM, Olmstead JW, Iezzoni AF (2009b) Fruit size QTL analysis of an F1 population derived from a cross between a domesticated sweet cherry cultivar and a wild forest sweet cherry. Tree Genet Genomes. doi:10.1007/s11295-009-0225-x

    Google Scholar 

  • Zhao W (2008) Full-length cDNA library construction and analysis of the expressed sequence tags (ESTs) of young mulberry shoots. Postdoctoral report 8. Nanjing University, China

  • Zhao W, Pan Y (2004) Genetic diversity of genus Morus revealed by RAPD markers in China. Int J Agric Biol 6:950–954

    CAS  Google Scholar 

  • Zhao W, Miao X, Jia S, Pan Y, Huang Y (2005) Isolation and characterization of microsatellite loci from the mulberry, Morus L. Plant Sci 16:519–525

    Google Scholar 

  • Zhao W, Zhou Z, Miao X, Wang S, Zhang L, Pan Y, Huang Y (2006) Genetic relatedness among cultivated and wild mulberry (Moraceae: Morus) as revealed by inter-simple sequence repeat (ISSR) analysis in China. Can J Plant Sci 86:251–257

    CAS  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunjupillai Vijayan.

Additional information

Communicated by: E. Dirlewanger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijayan, K. The emerging role of genomic tools in mulberry (Morus) genetic improvement. Tree Genetics & Genomes 6, 613–625 (2010). https://doi.org/10.1007/s11295-010-0276-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-010-0276-z

Keywords

Navigation