Skip to main content
Log in

Insertional mutagenesis in Populus: relevance and feasibility

  • Opinion Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The recent sequencing of the first tree genome, that of the black cottonwood (Populus trichocarpa), opens a new chapter in tree functional genomics. While the completion of the genome is a milestone, mobilizing this significant resource for better understanding the growth and development of woody perennials will be an even greater undertaking in the years to come. In other model organisms, a critical tool for high-throughput analysis of gene function has been the generation of large mutagenized populations. Some mutagenesis technologies and approaches cannot be applied to trees because of their typically outcrossing breeding systems, high heterozygosity, large body size, and delayed flowering. In contrast, gene-tagging approaches that use insertional mutagenesis to create dominant phenotypes are ideally suited for trees and, especially, Populus. Both activation tagging and enhancer trap programs have been successful in identifying new genes important to tree development. The generation of genome-wide insertional mutant populations, which provide direct functional links between genes and phenotypes, should help to integrate in silico analyses of gene and protein expression, association studies of natural genetic polymorphism, and phenotypic analyses of adaptation and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Populus species and hybrids are referred to in this paper as poplars, and include aspen and cottonwoods.

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Guilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Alvarado MC, Zsigmond LM, Kovacs I, Cseplo A, Koncz C, Szabados LM (2004) Gene trapping with firefly luciferase in Arabidopsis. Tagging of stress-responsive genes. Plant Physiol 134:18–27

    Article  PubMed  CAS  Google Scholar 

  • Bajaj YPS (1983) In vitro production of haploids. In: Handbook of plant cell culture. Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds), Macmillan, New York, pp 228–287

    Google Scholar 

  • Baldursson S, Ahuja MR (1996) Haploidy in forest trees. In: In vitro haploid production in higher plants. Kluwer, New York, pp 297–336

    Google Scholar 

  • Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82:259–266

    PubMed  CAS  Google Scholar 

  • Blakeslee AF, Belling J, Farnham ME, Bergner AD (1922) A haploid mutant in the jimson weed, Datura stramonium. Science 55:646–647

    Article  PubMed  Google Scholar 

  • Boerjan W (2005) Biotechnology and the domestication of forest trees. Curr Opin Biotechnol 16:159–166

    Article  PubMed  CAS  Google Scholar 

  • Borner R, Kampmann G, Chandler J, Gleissner R, Wisman E, Apel K, Melzer S (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J 24:591–599

    Article  PubMed  CAS  Google Scholar 

  • Brunner AM, Busov VB, Strauss SH (2004) The Poplar genome sequence: functional genomics in a keystone plant species. Trends Plant Sci 9:49–56

    Article  PubMed  CAS  Google Scholar 

  • Busov VB, Meilan R, Pearce DW, Ma C, Rood SB, Strauss SH (2003) Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiol 132:1283–1291

    Article  PubMed  CAS  Google Scholar 

  • Busov VB, Brunner AM, Meilan R, Filichkin S, Ganio L, Gandhi S, Strauss SH (2005) Genetic transformation: a powerful tool for dissection of adaptive traits in trees. New Phytol 167:9–18

    Article  PubMed  CAS  Google Scholar 

  • Deutsch F, Kumlehn J, Ziegenhagen B, Fladung M (2004) Stable haploid poplar callus lines from immature pollen culture. Physiol Plant 120:613–622

    Article  PubMed  CAS  Google Scholar 

  • Dodds PN, Lawrence GJ, Ellis JG (2001) Six amino acid changes confined to the leucine-rich repeat beta-strand/beta-turn motif determine the difference between the P and P2 rust resistance specificities in flax. Plant Cell 13:163–178

    Article  PubMed  CAS  Google Scholar 

  • Fladung M, Ahuja MR (1997) Excision of the maize transposable element Ac in periclinal chimeric leaves of 35S-Ac-rolC transgenic aspen-Populus. Plant Mol Biol 33:1097–1103

    Article  PubMed  CAS  Google Scholar 

  • Fladung M, Kumar S, Ahuja MR (1997) Genetic transformation of Populus genotypes with different chimaeric gene constructs: transformation efficiency and molecular analysis. Transgenic Res 6:111–121

    Article  CAS  Google Scholar 

  • Fladung M, Deutsch F, Honicka H, Kumar S (2004) T-DNA and transposon tagging in aspen. Plant Biol (Stuttg) 6:5–11

    Article  CAS  Google Scholar 

  • Furini A, Koncz C, Salamini F, Bartels D (1997) High level transcription of a member of a repeated gene family confers dehydration tolerance to callus tissue of Craterostigma plantagineum. EMBO J 16:3599–3608

    Article  PubMed  CAS  Google Scholar 

  • Groover AT (2005) What genes make a tree a tree? Trends Plant Sci 10:210–214

    Article  PubMed  CAS  Google Scholar 

  • Groover AT, Fontana JR, Arroyo JM, Yordan C, McCombie WR, Martienssen RA (2003) Secretion trap tagging of secreted and membrane-spanning proteins using Arabidopsis gene traps. Plant Physiol 132:698–708

    Article  PubMed  CAS  Google Scholar 

  • Groover A, Fontana J, Dupper G, Ma C, Martienssen R, Strauss S, Meilan R (2004) Gene and enhancer trap tagging of vascular-expressed genes in poplar trees. Plant Physiol 134:1742–1751

    Article  PubMed  CAS  Google Scholar 

  • Guha S, Maheshwari S (1964) In vitro production of embryos from anthers of Datura. Nature 204:497

    Article  Google Scholar 

  • Hayashi H, Czaja I, Schell J, Walden R (1992) Activation of a plant gene implicated in auxin signal transduction by T-DNA tagging. Science 258:1350–1353

    Article  PubMed  CAS  Google Scholar 

  • Ho RH, Raj Y (1985) Haploid plant production through anther culture in poplars. For Ecol Manag 13:133–142

    Article  Google Scholar 

  • Howe GT, Goldfarb B, Strauss SH (1994) Agrobacterium-mediated transformation of hybrid poplar suspension cultures and regeneration of transformed plants. Plant Cell Tissue Organ Cult 36:59–71

    Article  CAS  Google Scholar 

  • Howe GT, Strauss SH, Goldfarb B (1991) Insertion of the maize transposable element Ac into poplar. In: Ahuja, MR (ed) Woody plant biotechnology. Plenum, New York, pp 283–294

    Google Scholar 

  • Hu H, Zeng JZ (1984) Development of new varieties via anther culture. In: Ammirato PV, Evans DA, Sharp WR, Yamada Y (eds) Handbook of plant cell culture. Macmillan, New York, pp 65–90

    Google Scholar 

  • Ichikawa T, Nakazawa M, Kawashima M, Muto S, Gohda K, Suzuki K, Ishikawa A, Kobayashi H, Yoshizumi T, Tsumoto Y, Tsuhara Y, Iizumi H, Goto Y, Matsui M (2003) Sequence database of 1172 T-DNA insertion sites in Arabidopsis activation-tagging lines that showed phenotypes in T1 generation. Plant J 36:421–429

    Article  PubMed  CAS  Google Scholar 

  • Illies ZM (1974) Induction of haploid parthenogenesis in aspen by post-pollination treatment with Toluidine-blue. Silvae Genet 23:221–226

    Google Scholar 

  • Jeong DH, An S, Kang HG, Moon S, Han JJ, Park S, Lee HS, An K, An G (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130:1636–1644

    Article  PubMed  CAS  Google Scholar 

  • Kakimoto T (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274:982–985

    Article  PubMed  CAS  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  PubMed  CAS  Google Scholar 

  • Kinlaw CS, Neale DB (1997) Complex gene families in pine genomes. Trends Plant Sci 2:356–359

    Article  Google Scholar 

  • Kopecky F (1960) Experimentelle Erzeugung von haploiden Weißpappeln (Populus alba L.). Silvae Genet 9:102–109

    Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290

    Article  PubMed  CAS  Google Scholar 

  • Kubo H, Peeters AJ, Aarts MG, Pereira A, Koornneef M (1999) ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis. Plant Cell 11:1217–1226

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Fladung M (2003) Somatic mobility of the maize element Ac and its utility for gene tagging in aspen. Plant Mol Biol 51:643–650

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14:2366–2376

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  PubMed  CAS  Google Scholar 

  • Marsch-Martinez N, Greco R, Van AG, Herrera-Estrella L, Pereira A (2002) Activation tagging using the En-I maize transposon system in Arabidopsis. Plant Physiol 129:1544–1556

    Article  PubMed  CAS  Google Scholar 

  • Martienssen R (1998) Functional genomics: probing plant gene function and expression with transposons. Proc Natl Acad Sci U S A 95:2021–2026

    Article  PubMed  CAS  Google Scholar 

  • Martienssen R, Irish V (1999) Copying out our ABCs: the role of gene redundancy in interpreting genetic hierarchies. Trends Genet 15:435–437

    Article  PubMed  CAS  Google Scholar 

  • Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco DJ, Wagoner W, Lightner J, Wagner DR (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15:1689–1703

    Article  PubMed  CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  PubMed  CAS  Google Scholar 

  • Meilan R (1997) Floral induction in woody angiosperms. New For 14:179–202

    Google Scholar 

  • Meilan R, Brunner A, Skinner J, Strauss S (2001) Modification of flowering in transgenic trees. In: Komamine A, Morohoshi N. (eds) Molecular breeding of woody plants, progress in biotechnology series. Elsevier, Amsterdam, Netherlands, pp 247–256

    Chapter  Google Scholar 

  • Meilan R, Sabatti M, Ma C, Kuzminsk E (2004) An early-flowering genotype of Populus. J Plant Biol 47:52–56

    Article  Google Scholar 

  • Mofidabadi A, Kiss J, Mazik-Tokey K, Gergacz E, Heszky LE (1995) Callus induction and haploid plant regeneration from anther culture of two poplar species. Silvae Genet 44:141–145

    Google Scholar 

  • Nakazawa M, Ichikawa T, Ishikawa A, Kobayashi H, Tsuhara Y, Kawashima M, Suzuki K, Muto S, Matsui M (2003) Activation tagging, a novel tool to dissect the functions of a gene family. Plant J 34:741–750

    Article  PubMed  CAS  Google Scholar 

  • Neale DB, Savolainen O (2004) Association genetics of complex traits in conifers. Trends Plant Sci 9:325–330

    Article  PubMed  CAS  Google Scholar 

  • Nilsson O, Lee I, Blazquez MA, Weigel D (1998) Flowering-time genes modulate the response to LEAFY activity. Genetics 150:403–410

    PubMed  CAS  Google Scholar 

  • Nishal B, Tantikanjana T, Sundaresan V (2005) An inducible targeted tagging system for localized saturation mutagenesis in Arabidopsis. Plant Physiol 137:3–12

    Article  PubMed  CAS  Google Scholar 

  • Olsen JE, Junttila O (2002) Far red end-of-day treatment restores wild type-like plant length in hybrid aspen overexpressing phytochrome A. Physiol Plant 115:448–457

    Article  PubMed  CAS  Google Scholar 

  • Pan X, Li Y, Stein L (2005) Site preferences of insertional mutagenesis agents in Arabidopsis. Plant Physiol 137:168–175

    Article  PubMed  CAS  Google Scholar 

  • Parinov S, Sevugan M, Ye D, Yang WC, Kumaran M, Sundaresan V (1999) Analysis of flanking sequences from dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell 11:2263–2270

    Article  PubMed  CAS  Google Scholar 

  • Raina S, Mahalingam R, Chen F, Fedoroff N (2002) A collection of sequenced and mapped Ds transposon insertion sites in Arabidopsis thaliana. Plant Mol Biol 50:93–110

    Article  PubMed  CAS  Google Scholar 

  • Raizada MN, Nan GL, Walbot V (2001) Somatic and germinal mobility of the RescueMu transposon in transgenic maize. Plant Cell 13:1587–1608

    Article  PubMed  CAS  Google Scholar 

  • Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, Ma CP, Cheng SP, Jouanin L, Pilate G, Strauss SH (2000) Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J 22:235–245

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125:1508–1516

    Article  PubMed  CAS  Google Scholar 

  • Sallaud C, Meynard D, van Boxtel J, Gay C, Bes M, Brizard JP, Larmande P, Ortega D, Raynal M, Portefaix M, Ouwerkerk PB, Rueb S, Delseny M, Guiderdoni E (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106:1396–1408

    PubMed  CAS  Google Scholar 

  • Schneeberger RG, Zhang K, Tatarinova T, Troukhan M, Kwok SF, Drais J, Klinger K, Orejudos F, Macy K, Bhakta A, Burns J, Subramanian G, Donson J, Flavell R, Feldmann KA (2005) Agrobacterium T-DNA integration in Arabidopsis is correlated with DNA sequence compositions that occur frequently in gene promoter regions. Funct Integr Genomics 5:240–253

    Article  PubMed  CAS  Google Scholar 

  • Son SY, Chun YW, Hall RB (1991) Cold storage of in vitro cultures of hybrid poplar shoots (Populus alba L. × P. grandidentata Michx.). Plant Cell Tissue Organ Cult 27:161–168

    Article  Google Scholar 

  • Springer PS (2000) Gene traps: tools for plant development and genomics. Plant Cell 12:1007–1020

    Article  PubMed  CAS  Google Scholar 

  • Springer PS, McCombie WR, Sundaresan V, Martienssen RA (1995) Gene trap tagging of PROLIFERA, an essential MCM2-3-5-like gene in Arabidopsis. Science 268:877–880

    Article  PubMed  CAS  Google Scholar 

  • Stettler RF, Bawa KS (1971) Experimental induction of haploid parthenogenesis in black cottonwood. Silvae Genet 20:15–25

    Google Scholar 

  • Tralau HA (1957) Haploid form of Populus tremula from Uppland. Bot Notiser 110, 481–483

    Google Scholar 

  • Tsai CJ, Hubscher SL (2004) Cryopreservation in Populus functional genomics. New Phytol 164:73–81

    Article  CAS  Google Scholar 

  • Wang J, Li L, Wan X, An L, Zhang J (2004) Distribution of T-DNA carrying a Ds element on rice chromosomes. Sci China C Life Sci 47:322–331

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Ahn JH, Blazquez J, Borevitz, Christensen SK, Frankhauser C, Ferrandiz C, Kardailsky I, Neff MM, Nguyen JT, Sato S, Wang Z, Xia Y, Dixon RA, Harrison MJ, Lab C, Yanofsky MF, Chory J (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013

    Article  PubMed  CAS  Google Scholar 

  • Winton LL, Einspahr D (1968) The use of heat-treated pollen for aspen haploid induction. Forest Sci 14:406–407

    Google Scholar 

  • Wullschleger SD, Jansson S, Taylor G (2002) Genomics and forest biology: Populus emerges as the perennial favorite. Plant Cell 14:2651–2655

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto YY, Tsuhara Y, Gohda K, Suzuki K, Matsui M (2003) Gene trapping of the Arabidopsis genome with a firefly luciferase reporter. Plant J 35:273–283

    Article  PubMed  CAS  Google Scholar 

  • Zubko E, Adams CJ, Machaekova I, Malbeck J, Scollan C, Meyer P (2002) Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J 29:797–808

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Busov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busov, V., Fladung, M., Groover, A. et al. Insertional mutagenesis in Populus: relevance and feasibility. Tree Genetics & Genomes 1, 135–142 (2005). https://doi.org/10.1007/s11295-005-0019-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-005-0019-8

Keywords

Navigation