Skip to main content
Log in

Genetic mapping of Eef1, a major effect QTL for early flowering in Eucalyptus grandis

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

An early flowering mutant plant of Eucalyptus grandis with normal vegetative growth was found in a nursery in northern Brazil. This mutant plant flowers at approximately 90 days from germination. A cross between a wild-type (normal flowering) tree and the mutant was carried out, generating a progeny of 88 individuals where early flowering segregated in an approximate 1:1 ratio. A genome scan with 100 microsatellite markers distributed across the genome was carried out using bulk segregant analysis (BSA) on two contrasting bulks of 15 plants each. Linkages (LOD>3.0) with a major effect early flowering quantitative trait locus (QTL) were detected and confirmed by a full scale cosegregation analysis for markers EMBRA27, EMBRA60, EMBRA164, EMBRA158, EMBRA91, and EMBRA65. A localized linkage map involving the six loci and the early flowering QTL named Eucalyptus early flowering 1 (Eef1) was constructed belonging to linkage group #2 in the existing microsatellite reference map. The Eef1 locus was mapped between markers EMBRA27 and EMBRA164, with distances of 21.8 and 6.4 cM, respectively. In introgression experiments, these two markers could be successfully used with an expected precision of 98% to select plants carrying the Eef1 mutant allele, assuming no recombination interference in the genomic segment. Early flowering could be a very useful trait both in breeding as well as experimental genetics of Eucalyptus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akano AO, Dixon AGO, Barrera E, Fregene M (2002) Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theor Appl Genet 105:521–525

    Article  PubMed  CAS  Google Scholar 

  2. Altinkut A, Gozukirmizi N (2003) Search for microsatellite markers associated with water-stress tolerance in wheat through bulked segregant analysis. Mol Biotechnol 2:97–106

    Article  Google Scholar 

  3. Benet H, Guries RP, Boury S, Smalley EB (1995) Identification of RAPD markers linked to a black leaf spot resistance gene in Chinese elm. Theor Appl Genet 90:1068–1073

    Article  CAS  Google Scholar 

  4. Brondani RPV (2000) Desenvolvimento, mapeamento e caracterização de marcadores microssatélites em Eucalyptus grandis e E. urophylla. Ph.D. thesis. Universidade de Brasilia-UNB, Brasília, Brazil

  5. Brondani RP, Brondani C, Grattapaglia D (2002) Towards a genus-wide reference linkage map for Eucalyptus based exclusively on highly informative microsatellite markers. Mol Genet Genomics 267:338–347

    Article  PubMed  CAS  Google Scholar 

  6. Brondani RP, Grattapaglia D (2001) Cost-effective method to synthesize a fluorescent internal DNA standard for automated fragment sizing. Biotechniques 31:798–800

    Google Scholar 

  7. Cervera MT, Gusmão J, Steenackers M, Peleman J, Storme V, Vanden Broeck A, Van Montagu M, Boerjan W (1996) Identification of AFLP molecular markers for resistance against Melampsora larici-populina in Populus. Theor Appl Genet 93:733–737

    Article  CAS  Google Scholar 

  8. Chambers PGS, Potts BM, Tilyard PG (1997) The genetic control of flowering precocity in Eucalyptus globulus ssp. globulus. Silvae Genet 46:207–214

    Google Scholar 

  9. Devey ME, Delfino-Mix A, Kinloch BB, Neale DB (1995) Random amplified polymorphic DNA markers tightly linked to a gene for resistance to white pine blister rust in sugar pine. Proc Natl Acad Sci U S A 92: 2066–2070

    Article  PubMed  CAS  Google Scholar 

  10. Dornelas MC, Amaral WAN, Rodriguez APM (2004) EgLFY, the Eucalyptus grandis homolog of the Arabidopsis gene LEAFY is expressed in reproductive and vegetative tissues. Braz J Plant Physiol 16:105–114

    Article  CAS  Google Scholar 

  11. Dutkowski GW, Potts BM (1999) Geographical patterns of genetic variation in Eucalyptus globulus ssp. globulus and a revised racial classification. Aust J Bot 47: 237–263

    Article  Google Scholar 

  12. Eldridge K, Davidson J, Harwood C, Van Wyk G (1993) Eucalypt domestication and breeding. Clarendon Press, Oxford

    Google Scholar 

  13. Grattapaglia D (2004) Integrating genomics into Eucalyptus breeding. Genet Mol Res 30:369–379

    Google Scholar 

  14. Grattapaglia D, Bradshaw HD Jr (1994) Nuclear DNA content of commercially important Eucalyptus species and hybrids. Can J For Res 24:1074–1078

    Article  Google Scholar 

  15. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD Markers. Genetics 137:1121–1137

    PubMed  CAS  Google Scholar 

  16. Grattapaglia D, Bertolucci FL, Penchel R, Sederoff RR (1996) Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. Genetics 144:1205–1214

    PubMed  CAS  Google Scholar 

  17. Griffin AR, Whiteman P, Rudge T, Burgess IP, Moncur M (1993) Effect of paclobutrazol on flower-bud production and vegetative growth in two species of Eucalyptus. Can J For Res 23:640–647

    Article  CAS  Google Scholar 

  18. Hasan O, Reid JB (1995) Reduction in generation time in Eucalyptus globulus. Plant Growth Regul 17:53–60

    CAS  Google Scholar 

  19. Henderson IR, Shindo C, Dean C (2003) The need for winter in the switch to flowering. Annu Rev Genet 37:371–392

    Article  PubMed  CAS  Google Scholar 

  20. Jackson MJ, Line MA, Hasan O (1996) Microbial degradation of a recalcitrant plant growth retardant-paclobutrazol (PP333). Soil Biol Biochem 28:1265–1267

    Article  CAS  Google Scholar 

  21. Jordan GJ, Potts BM, Wiltshire RJ (1999) Strong, independent, quantitative genetic control of the timing of vegetative phase change and first flowering in Eucalyptus globulus ssp. globulus (Tasmanian blue gum). Heredity 83:179–187

    Article  PubMed  Google Scholar 

  22. Junghans DT, Alfenas AC, Brommonschenkel SH, Oda S, Mello EJ, Grattapaglia D (2003) Resistance to rust (Puccinia psidii Winter) in eucalyptus: mode of inheritance and mapping of a major gene with RAPD markers. Theor Appl Genet 108:175–180

    Article  PubMed  CAS  Google Scholar 

  23. Kyozuka J, Harcourt R, Peacock WJ, Dennis ES (1997) Eucalyptus has functional equivalents of the Arabidopsis AP1 gene. Plant Mol Biol 35:573–584

    Article  PubMed  CAS  Google Scholar 

  24. Mackay JJ, O'Malley DM, Presnell T, Booker FL, Campbell MM, Whetten RW, Sederoff RR (1997) Inheritance, gene expression, and lignin characterization in a mutant pine deficient in cinnamyl alcohol dehydrogenase. Proc Natl Acad Sci U S A 15:8255–8260

    Article  Google Scholar 

  25. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  26. Moncur MW, Hasan O (1994) Floral induction in Eucalyptus nitens. Tree Physiol 14:1303–1312

    PubMed  Google Scholar 

  27. Raman H, Moroni S, Sato K, Read J, Scott J (2002) Identification of AFLP and microsatellite markers linked with an aluminium tolerance gene in barley (Hordeum vulgare L.). Theor Appl Genet 105:458–464

    Article  PubMed  CAS  Google Scholar 

  28. Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, Ma C, Cheng S, Jouanin L, Pilate G, Strauss SH (2000) Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J 22:235–245

    Article  PubMed  CAS  Google Scholar 

  29. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: Joinmap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  30. Simpson GG, Gendall AR, Dean C (1999) When to switch to flowering. Annu Rev Cell Dev Biol 15:519–550

    Article  PubMed  CAS  Google Scholar 

  31. Southerton SG, Strauss SH, Olive MR, Harcourt RL, Decroocq V, Zhu X, Llewellyn DJ, Peacock WJ, Dennis ES (1998) Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY. Plant Mol Biol 37:897–910

    Article  PubMed  CAS  Google Scholar 

  32. Tabor GM, Kubisiak TL, Klopfenstein NB, Mcnabb HS Jr (2000) Bulked segregant analysis identifies molecular markers linked to Melampsora medusae resistance in Populus deltoides. Phytopathology 90:1039–1042

    Article  CAS  PubMed  Google Scholar 

  33. Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  PubMed  CAS  Google Scholar 

  34. Wilcox PL, Amerson HV, Kuhlman EG, Liu BH, O'Malley DM, Sederoff RR (1996) Detection of a major gene for resistance to fusiform rust disease in loblolly pine by genomic mapping. Proc Natl Acad Sci U S A 93:3859–3864

    Article  PubMed  CAS  Google Scholar 

  35. Wiltshire RJ, Potts BM, Reid JB (1998) The genetic control of reproductive and vegetative phase change in the Eucalyptus risdonii/E. tenuiramis complex. Aust J Bot 46:45–63

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Silas Zen and Raimundo Medeiros from Ferro Gusa Carajás S.A. for continued support to this research project. This work was supported by the Brazilian Ministry of Science and Technology, FINEP through the competitive grant GENOLYPTUS, “Brazilian Network of Eucalyptus Genome Research” to D.G. and collaborators and the Brazilian National Research Council, CNPq, with a Ph.D. fellowship to A.A.M. and a research fellowship to D.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Grattapaglia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Missiaggia, A.A., Piacezzi, A.L. & Grattapaglia, D. Genetic mapping of Eef1, a major effect QTL for early flowering in Eucalyptus grandis . Tree Genetics & Genomes 1, 79–84 (2005). https://doi.org/10.1007/s11295-005-0011-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-005-0011-3

Keywords

Navigation