Skip to main content
Log in

DNA barcoding of freshwater zooplankton in Lake Kasumigaura, Japan

  • Original Article
  • Published:
Ecological Research

Abstract

Although DNA barcoding is a promising tool for the identification of organisms, it requires the development of a specific reference sequence library for sample application. In the present study we developed a Lake Kasumigaura, Japan, zooplankton DNA barcode library to increase the sensitivity of future zooplankton monitoring for detecting lake ecosystem condition changes. Specifically, the mitochondrial cytochrome c oxidase subunit I (mtCOI) haplotype, i.e., the primary DNA barcode, was examined for each zooplankton taxon. In crustaceans, 37 mtCOI haplotypes were obtained from 99 individuals, representing four and 15 morpho-species of Copepoda and Cladocera, respectively. Comparing these sequences with those in GenBank shows that the lake harbors putative non-indigenous species, such as Daphnia ambigua. In rotifers, 132 mtCOI haplotypes were obtained from 302 individuals, representing 11 genera and one unclassified taxon. The automatic barcode gap discovery (ABGD) algorithm separated these haplotypes into 43 species. Brachionus cf. calyciflorus was divided into five ABGD species, and different ABGD species tended to occur in different seasons. Seasonal ABGD-species succession was also observed within Polyarthra spp. and Synchaeta spp. These seasonal successions were not detected by inspections of external morphology alone. Accepting up to 7% sequence divergence within the same species, mtCOI reference sequences were available in GenBank for three, 13, and 17 species in Copepoda, Cladocera, and Rotifera, respectively. The present results, therefore, reveal the serious shortage of mtCOI reference sequences for rotifers, and underscore the urgency of developing rotifer mtCOI barcode libraries on a global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baek SY, Jang KH, Choi EH, Ryu SH, Kim SK, Lee JH et al (2016) DNA barcoding of metazoan zooplankton copepods from South Korea. PLoS One 11:e0157307. doi:10.1371/journal.pone.0157307

    Article  PubMed  PubMed Central  Google Scholar 

  • Ban S, Makino W, SakanoH Haruna H, Ueda H (2013) Annual variation in biomass and the community structure of crustacean zooplankton over 5 years in Lake Toya, Japan. Limnology 14:59–70. doi:10.1007/s10201-012-0387-3

    Article  Google Scholar 

  • Bekker EI, Karabanov DP, Galimov YR, Kotov AA (2016) DNA Barcoding reveals high cryptic diversity in the North Eurasian Moina species (Crustacea: Cladocera). PLoS One 11:e0161737. doi:10.1371/journal.pone.0161737

    Article  PubMed  PubMed Central  Google Scholar 

  • Benzie JAH (2005) Cladocera: the genus Daphnia (including Daphniopsis). Backhuys Publishers, Leiden

    Google Scholar 

  • Briski E, Cristescu ME, Bailey SA, MacIssac HJ (2011) Use of DNA barcode to detect invertebrate invasive species from diapausing eggs. Biol Invasion 13:1325–1340. doi:10.1007/s10530-010-9892-7

    Article  Google Scholar 

  • Briski E, Ghabooli S, Bailey SA, MacIsaac HJ (2016) Are genetic databases sufficiently populated to detect non-indigenous species? Biol Invasions 18:1911–1922. doi:10.1007/s10530-016-1134-1

    Article  Google Scholar 

  • Cieplinski A, Weisse T, Obertegger U (2016) High diversity in Keratella cochlearis (Rotifera, Monogononta): morphological and genetic evidence. Hydrobiologia. doi:10.1007/s10750-016-2781-z

    Google Scholar 

  • Costa FO, deWaard FR, Boutillier F, Ratnasingham S, Dooh ST, Hajibabael M, Hebert PDN (2007) Biological identifications through DNA barcodes: the case of the Crustacea. Can J Fish Aquat Sci 64:272–295. doi:10.1139/f07-008

    Article  CAS  Google Scholar 

  • Costello MJ, May RM, Stork NE (2013) Can we name earth’s species before they go extinct? Science 329:413–416. doi:10.1126/science.1230318

    Article  Google Scholar 

  • Cristescu MEA, Hebert PDN (2002) Phylogeny and adaptive radiation in the Onychopoda (Crustacea, Cladocera): evidence from multiple gene sequences. J Evol Biol 15:838–849. doi:10.1046/j.1420-9101.2002.00466.x

    Article  CAS  Google Scholar 

  • De Melo R, Hebert PDN (1994) A taxonomic reevaluation of North American Bosminidae. Can J Zool 72:1808–1825. doi:10.1139/z94-245

    Article  Google Scholar 

  • Defaye D, Kawabata K (1993) Mesocyclops dissimilis n. sp. from Lake Biwa, Japan. Hydrobiologia 257:121–126. doi:10.1007/BF00005952

    Article  Google Scholar 

  • Deiner K, Fronhofer EA, Mächler E, Walser J-C, Altermatt F (2015) Envornmental DNA reveals that rivers are conveyer belt of biodiversity information. Nat Commun 7:12544. doi:10.1038/ncomms12544

    Article  Google Scholar 

  • Dumont HJ, Negrea S (2002) Introduction to the class Branchiopoda. Backhuys Publishers, Leiden

    Google Scholar 

  • Einsle U (1996) Copepoda: Cyclopoida. SPB Academic Publishing, Amsterdam, Genera Cyclops, Megacyclops, Acanthocyclops

    Google Scholar 

  • Elías-Gutiérrez M, Jerónimo FM, Ivanova NV, Valdez-Moreno M, Hebert PDN (2008) DNA barcodes for Cladocera and Copepoda from Mexico and Guatemala, highlights and new discoveries. Zootaxa 1839:1–42

    Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Frey DG (1982) Questions concerning cosmopolitanism in Cladocera. Arch Hydrobiol 93:484–502

    Google Scholar 

  • García-Morales AE, Elías-Gutiérrez M (2013) DNA barcoding of freshwater rotifera in Mexico: evidence of cryptic speciation in common rotifers. Mol Ecol Res 13:1097–1107. doi:10.1111/1755-0998.12080

    Google Scholar 

  • Geller J, Meyer C, Parker M, Hawk H (2013) Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol Ecol Resour 13:851–861. doi:10.1111/1755-0998.12138

    Article  CAS  PubMed  Google Scholar 

  • Geng X, Zhang L, Xu M, Deng D, Zhang H (2014) PCR amplication and sequence analysis of CO I genes and their flanking regions of mitochondrial DNA from three Daphnia species. J Nanjing Agricultural Univ 37:44–50. doi:10.7685/j.issn.1000-2030.2014.03.006

    CAS  Google Scholar 

  • Hanazato T, Aizaki M (1991) Changes in species composition of cladoceran community in Lake Kasumigaura during 1986–1989: occurrence of Daphnia galeata and its effect on algal biomass. Jpn J Limnol 52:45–55. doi:10.3739/rikusui.52.45

    Article  Google Scholar 

  • Hanazato T, Yasuno M (1985) Occurrence of Daphnia ambigua Scourfield in Lake Kasumigaura. Jpn J Limnol 46:212–214. doi:10.3739/rikusui.46.212

    Article  Google Scholar 

  • Hanazato T, Yasuno M (1987) Characteristics of biomass and production of cladoceran zooplankton in Lake Kasumigaura. Jpn J Limnol 48:S45–S57. doi:10.3739/rikusui.48.Special_45

    Article  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaaard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321. doi:10.1098/rspb.2002.2218

    Article  CAS  Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard DR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc London B 270(Suppl 1):S96–S99. doi:10.1098/rsbl.2003.0025

    Article  CAS  Google Scholar 

  • Hebert PDN, Witt JDS, Adamowicz SJ (2003c) Phylogeographical patterning in Daphnia ambigua: regional divergence and intercontinental cohesion. Limnol Oceanogr 48:261–268. doi:10.4319/lo.2003.48.1.0261

    Article  Google Scholar 

  • Ishida T (2002) Illustrated fauna of the freshwater cyclopoid copepods in Japan. Bull Biogeogr Soc Jpn 57:37–106 (in Japanese with English abstract)

    Google Scholar 

  • Jeppesen E, Leavitt PR, De Meester L, Jensen JP (2001) Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. Trends Ecol Evol 16:191–198. doi:10.1016/S0169-5347(01)02100-0

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Knebelsberger T, Dunz AR, Neumann D, Geiger MF (2015) Molecular diversity of Gemany’s freshwater fishes and lampreys assessed by DNA barcoding. Mol Ecol Res 15:562–572

    Article  CAS  Google Scholar 

  • Kotov AA, Ishida S, Taylor DJ (2009) Revision of the genus Bosmina Baird, 1845 (Cladocera: Bosminidae), based on evidence from male morphological characters and molecular phylogenies. Zool J Linnean Soc 156:1–51. doi:10.1111/j.1096-3642.2008.00475.x

    Article  Google Scholar 

  • Kotov A, Forró L, Korovchinsky NM, Petrusek A (2013) World checklist of freshwater Cladocera species. World Wide Web electronic publication. http://fada.biodiversity.be/group/show/17. Accessed 24 Sept 2015

  • Lakatos C, Urabe J, Makino W (2015) Cryptic diversity of Japanese Diaphanosoma (Crustacea: Cladocera) revealed by morphological and molecular assessments. Inland Wat 5:253–262. doi:10.5268/IW-5.3.847

    Article  Google Scholar 

  • Lampert W, Sommer U (1997) Limnoecology. The ecology of lakes and streams. Oxford University Press, Oxford

    Google Scholar 

  • Lim NKM, Tay YC, Srivathsan A, Tan JWT, Kwik JTB, Baloğlu B, Meier R, Yeo DCJ (2016) Next-generation freshwater bioassessment: eDNA metabarcoding with a conserved metazoan primer reveals species-rich and reservoir-specific communities. R Soc Open Sci 3:160635. doi:10.1098/rsos.160635

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma X, Wolinska J, Petrusek A, Gießler S, Hu W, Yin M (2016) The phenotypic plasticity in Chinese populations of Daphnia similoides sinensis: recurvate helmeted forms are associated with the presence of predators. J Plankton Res 38:855–864. doi:10.1093/plankt/fbw031

    Article  Google Scholar 

  • Makino W, Ban S (1998) Diel changes in vertical overlap between Cyclops strenuus (Copepoda; Cyclopoida) and its prey in oligotrophic Lake Toya, Hokkaido, Japan. J Mar Syst 15:139–148. doi:10.1016/S0924-7963(97)00073-0

    Article  Google Scholar 

  • Makino W, Tanabe AS (2009) Extreme population genetic differentiation and secondary contact in the freshwater copepod Acanthodiaptomus pacificus in the Japanese Archipelago. Mol Ecol 18:3699–3713. doi:10.1111/j.1365-294X.2009.04307.x

    Article  CAS  PubMed  Google Scholar 

  • Makino W, Haruna H, Ban S (1996) Diel vertical migration and feeding rhythm of Daphnia longispina and Bosmina coregoni in Lake Toya, Hokkaido, Japan. Hydrobiologia 337:133–143. doi:10.1007/BF00028514

    Article  Google Scholar 

  • Makino W, Ohtsuki H, Urabe J (2013) Finding copepod footprints: a protocol for molecular identification of diapausing eggs in lake sediments. Limnology 14:269–282. doi:10.1007/s10201-013-0404-1

    Article  Google Scholar 

  • Marrone F, Lo Brutto S, Hundsdoerfer AK, Arculeo M (2013) Overlooked cryptic endemism in copepods: systematics and natural history of the calanoid subgenus Occidodiaptomus Borutzky 1991 (Copepoda, Calanoda, Diaptomidae). Mol Phylogenet Evol 66:190–202. doi:10.1016/j.ympev.2012.09.016

    Article  PubMed  Google Scholar 

  • Mills S, Alcántara-Rodríguez JA, Ciros-Pérez J, Gómez A, Hagiwara A, Galindo KH, Jersabek CD, Malekzadeh-Viayeh R, Leasi F, Lee J-S, Welch DBM, Papakostas S, Riss S, Segres H, Serra M, Shiel R, Smolak R, Snell TW, Stelzer C-P, Tang CQ, Wallace RL, Fontaneto D, Walsh EJ (2016) Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) trough DNA taxonomy. Hydrobiologia. doi:10.1007/s10750-016-2725-7

    Google Scholar 

  • Mizuno T, Takahashi E (eds) (2000) An illustrated guide to freshwater zooplankton in Japan (in Japanese). Tokai University Press, Tokyo

    Google Scholar 

  • Obertegger U, Fontaneto D, Flaim G (2012) Using DNA taxonomy to investigate the ecological determinants of plankton diversity: explaining the occurrence of Synchaeta spp. (Rotifera, Monogononta) in mountain lakes. Freshwat Biol 57:1545–1553. doi:10.1111/j.1365-2427.2012.02815.x

    Article  Google Scholar 

  • Obertegger U, Flaim G, Fontaneto D (2014) Cryptic diversity within the rotifer Polyarthra dolichoptera along an altitudinal gradient. Freshwat Biol 59:2413–2427. doi:10.1111/fwb.12447

    Article  Google Scholar 

  • Pace ML (1986) An empirical analysis of zooplankton community size structure across lake trophic gradients. Limnol Oceanogr 31:45–55. doi:10.4319/lo.1986.31.1.0045

    Article  Google Scholar 

  • Popova EV, Petrusek A, Kořínek V, Mergeay J, Bekker EI, Karabanov DP, Galimov YR, Neretina TV, Taylor DJ, Kotov AA (2016) Revision of the Old World Daphnia (Ctenodaphnia) similis group (Cladocera, Daphniidae). Zootaxa 4161:1–40. doi:10.11646/zootaxa.4161.1.1

    Article  PubMed  Google Scholar 

  • Prosser S, Martínez-Arce A, Elías-Gutiérrez M (2013) A new set of primers for COI amplification from freshwater microcrustaceans. Mol Ecol Res 13:1151–1155. doi:10.1111/1755-0998.12132

    CAS  Google Scholar 

  • Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, Automated Barcode Gap Discovery for primary species delimitation. Mol Ecol 21:1864–1877. doi:10.1111/j.1365-294X.2011.05239.x

    Article  CAS  PubMed  Google Scholar 

  • Sarri C, Stamatis C, Sarafidou T, Galara I, Godosopoulos V, Kolovos M, Liakou C, Tastsoglou S, Mamuris Z (2014) A new set of 16S rRNA universal primers for identification of animal species. Food Control 43:35–41. doi:10.1016/j.foodcont.2014.02.036

    Article  CAS  Google Scholar 

  • Segers H (2007) Annotated checklist of the rotifers (Phylum Rotifera), with notes on nomenclature, taxonomy and distribution. Zootaxa 1564:1–104

    Google Scholar 

  • Sørensen MV, Giribet G (2006) A modern approach to rotiferan phylogeny: combining morphological and molecular data. Mol Phylogenet Evol 40:585–608. doi:10.1016/j.ympev.2006.04.001

    Article  PubMed  Google Scholar 

  • Takamura N, Nakagawa M, Hanazato T (2017) Zooplankton abundance in the pelagic region of Lake Kasumigaura (Japan): monthly data since 1980. Ecol Res 32:1–1. doi:10.1007/s11284-016-1406-3

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka S (2000) A taxonomic revision of Japanese Bosminidae (Crustacea, Cladocera). Bull Toyama Sci Museum 23:109–125

    Google Scholar 

  • Tang CQ, Obertegger U, Fontaneto D, Barraclough TG (2014) Sexual species are separated by larger genetic gaps than asexual species in rotifers. Evolution 68:2901–2916. doi:10.1111/evo.12483

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor DJ, Ishikane CR, Haney RA (2002) The systematics of Holarctic bosminids and a revision that reconciles molecular and morphological evolution. Limnol Oceanogr 47:1486–1495. doi:10.4319/lo.2002.47.5.1486

    Article  Google Scholar 

  • Telfer A, Young M, Quinn J, Perez K, Sobel C, Sones J, Levesque-Beaudin V, Derbyshire R, Fernandez-Triana J, Rougerie R, Thevanayagam A, Boskovic A, Borisenko A, Cadel A, Brown A, Pages A, Castillo A, Nicolai A, Glenn Mockford B, Bukowski B, Wilson B, Trojahn B, Lacroix C, Brimblecombe C, Hay C, Ho C, Steinke C, Warne C, Garrido Cortes C, Engelking D, Wright D, Lijtmaer D, Gascoigne D, Hernandez Martich D, Morningstar D, Neumann D, Steinke D, Marco DeBruin D, Dobias D, Sears E, Richard E, Damstra E, Zakharov E, Laberge F, Collins G, Blagoev G, Grainge G, Ansell G, Meredith G, Hogg I, McKeown J, Topan J, Bracey J, Guenther J, Sills-Gilligan J, Addesi J, Persi J, Layton K, D’Souza K, Dorji K, Grundy K, Nghidinwa K, Ronnenberg K, Lee K, Xie L, Lu L, Penev L, Gonzalez M, Rosati M, Kekkonen M, Kuzmina M, Iskandar M, Mutanen M, Fatahi M, Pentinsaari M, Bauman M, Nikolova N, Ivanova N, Jones N, Weerasuriya N, Monkhouse N, Lavinia P, Jannetta P, Hanisch P, McMullin R, Ojeda Flores R, Mouttet R, Vender R, Labbee R, Forsyth R, Lauder R, Dickson R, Kroft R, Miller S, MacDonald S, Panthi S, Pedersen S, Sobek-Swant S, Naik S, Lipinskaya T, Eagalle T, Decaëns T, Kosuth T, Braukmann T, Woodcock T, Roslin T, Zammit T, Campbell V, Dinca V, Peneva V, Hebert P, deWaard J (2015) Biodiversity inventories in high gear: DNA barcoding facilitates a rapid biotic survey of a temperate nature reserve. Biodivers Data J 3:e6313. doi:10.3897/BDJ.3.e6313

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trebitz AS, Hoffman JC, Grant GW, Billehus TM, Pilgrim EM (2015) Potential for DNA-based identification of Great Lakes fauna: match and mismatch between taxa inventories and DNA barcode libraries. Sci Rep 5:12162. doi:10.1038/srep12162

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueda H, Reed JW (eds) (2003) Copepoda: Cyclopoida. Genera mesocyclops and thermocyclops. Backhuys Publishers, Leiden

    Google Scholar 

  • Xiang X-L, Xi Y-L, Wen X-L, Zhang J-Y, Ma Q (2010) Spatial patterns of genetic differentiation in Brachionus calyciflorus species complex collected from East China in summer. Hydrobiologia 638:67–83. doi:10.1007/s10750-009-0010-8

    Article  CAS  Google Scholar 

  • Xu L, Han B-P, Van Damme K, Vierstraete A, Vanfleteren JR, Dumont HJ (2011) Biogeography and evolution of the Holartic zooplankton genus Leptodora (Crustacea: Branchiopoda: Haplopoda). J Biogeogr 38:359–370. doi:10.1111/j.1365-2699.2010.02409.x

    Article  Google Scholar 

  • Yoshida T, Kagami M, Gurung TB, Urabe J (2001) Seasonal succession of zooplankton in the north basin of Lake Biwa. Aquat Ecol 35:19–29. doi:10.1023/A:1011498202050

    Article  Google Scholar 

  • Young S-S, Ni M–H, Liu M–Y (2012) Systematic study of the Simocephalus sensu stricto species group (Cladocera: Daphniidae) from Taiwan by morphometric and molecular analyses. Zool Stud 51:222–231

    Google Scholar 

  • Zhang G, Xi Y-L, Xue Y-H, Xiang X-L, Wen X-L (2015) Coal fly ash effluent affects the distribution of Brachionus calyciflorus sibling species. Ecotoxicol Environ Saf 112:60–67. doi:10.1016/j.ecoenv.2014.09.036

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The sampling was conducted as part of the Lake Kasumigaura Long-term Environmental Monitoring Program of the National Institute for Environmental Studies, Japan. Special thanks go to those who participated in the field-work at the lake. The study was supported by grants from the Japan Society for the Promotion of Science (Nos. 15K07211 and 15H02380) and by the Environment Research and Technology Development Fund (4-1602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Makino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 591 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makino, W., Maruoka, N., Nakagawa, M. et al. DNA barcoding of freshwater zooplankton in Lake Kasumigaura, Japan. Ecol Res 32, 481–493 (2017). https://doi.org/10.1007/s11284-017-1458-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-017-1458-z

Keywords

Navigation