Skip to main content
Log in

Bandwidth Enhancement Scheme for a Low Profile Rectangular Dielectric Resonator Antenna with a Flagpole Shaped Microstrip Feed

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This article exemplifies about the design of a low profile Rectangular Dielectric Resonator Antenna (RDRA) associated with a flagpole shaped microstrip feeding technique for bandwidth enhancement. The proposed ‘Six’ shaped DRA works at X band and Ku band frequencies and offers a broad bandwidth of 57.11% from 8.82 to 14.6 GHz with limited volume of 2.5 mm. A flagpole shaped microstrip feeding contributes superior coupling and improves impedance bandwidth to its maximum. The proposed antenna can serve as an excellent candidate for high frequency applications such as satellite broadcast services and space shuttle communication. It is very useful for both uplink (10.95–11.7 GHz) and downlink frequencies (14–14.6 GHz) of Ku band VSAT (Very Small Aperture Terminal). The new ‘Six’ shaped DR structure and the modified microstripline feeding technique induce TE111 and TE112 modes of RDRA. The closely spaced resonant modes get coupled and accelerate the process of bandwidth enhancement. Results show that there is an achievement of fair agreement between measured and simulated results of the proposed antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Petosa, A. (2007). Dielectric Resonator Antenna Handbook. Norwood MA Artech House.

  2. Leung, K. W. (1998). Annular-slot coupled dielectric resonator antenna for WLAN. Electronics Letters, 341, 275–1277.

    Google Scholar 

  3. Li, T. W., & Sun, J. S. (2005). A wide U-shape slot fed Broadband Dielectric Resonator Antennas. Symposium on Antenna Technology and applied Electromagnetics. ANTEM-France, 124–125.

  4. Bijumon, P. V., Sreedevi, M. K., Suma, M. N., Sebastian, M. T., & Mohanan, P. V. (2005). Broadband Cylindrical dielectric resonator antenna excited by modified microstripline. Electronic Letters, 41(7), 385.

    Article  Google Scholar 

  5. Rashidian, A., Shafai, L., & Klymyshyn, D. N. (2014). Tall microstrip transmission lines for dielectric resonator antenna applications. IET Microw Antennas Propag., 8, 112–124.

    Article  Google Scholar 

  6. Drossos, G., Wu, Z., & Davis, L. E. (1999). The air gap effect on a microstrip coupled cylindrical dielectric resonator antenna. Microwave and Optical Technology Letters, 20(1), 36–40.

    Article  Google Scholar 

  7. Gao, Y., Feng, Z., & Zhang, L. (2012). Compact asymmetrical T-shaped dielectric resonator antenna for broadband applications. IEEE Transactions on Antennas and Propagation, 60(3), 1611–1615.

    Article  Google Scholar 

  8. Sharma, A., & Gangwar, R. K. (2016). Circularly polarised hybrid Z-shaped cylindrical dielectric resonator antenna for multiband applications. IET Microw Antennas Propag, 10(12), 1259–1267.

    Article  Google Scholar 

  9. Gupta, R. D., & Parihar, M. S. (2016). Investigation of an asymmetrical E shaped dielectric resonator antenna with wide band characteristics. IET Microw Antennas Propag, 10(12), 1292–1297.

    Article  Google Scholar 

  10. Vinodha, E., & Raghavan, S. (2017). A broadband inverted umbrella shaped cylindrical dielectric resonator Antenna for “WLAN” and “C” band applications. International journal of RF and Microw Computer aided Engg., 27(6), 2–7.

    Google Scholar 

  11. Vinodha, E., & Raghavan, S. (2018). Low Profile wide band ‘S’ shaped Rectangular Dielectric Resonator Antenna for “X” band application. IETE Journal of Research, 35, 1–7.

    Google Scholar 

  12. Varshney, G., Pandey, V. S., Yaduvanshi, R. S., & Kumar, L. (2017). Wide band circularly polarized dielectric resonator antenna with stair-shaped slot excitation. IEEE Transactions on Antennas and Propagation, 65(3), 1380–1383.

    Article  MathSciNet  MATH  Google Scholar 

  13. Chair, R., Kishk, A. A., & Lee, K. F. (2006). Experimental investigation for wideband perforated dielectric resonator antenna. Electronics Letters, 42, 137–139.

    Article  Google Scholar 

  14. Zubir, I. A., Othman, M., Ullah, U., Kamal, S., Rahman, M. F. A., Hussin, R., Omar, M. F. B. M., Mohammed, A. S. B., Ain, M. F. B., Ahmad, Z. A., & Abdullah, M. Z. (2020). A low-profile hybrid multi- permittivity dielectric resonator antenna with perforated structure for Ku and K band applications. IEEE Access, 8, 151219–151228.

    Article  Google Scholar 

  15. Azari, A., Ismail, A., Sali, A., & Hashim, F. (2013). A new super wideband fractal monopole dielectric resonator antenna. IEEE Antennas Wireless Propag Lett, 12, 1014–1016.

    Article  Google Scholar 

  16. Pan, Y. M., & Zheng, S. Y. (2016). A low-profile stacked dielectric resonator antenna with high-gain and wide bandwidth. IEEE Antennas and Wireless Propagation Letters, 15, 68–71.

    Article  Google Scholar 

  17. Qian, Y. H., & Chu, Q. X. (2017). A broadband hybrid monopole-dielectric resonator water antenna. IEEE Antennas Wireless Propag. Lett., 16, 360–363.

    Article  Google Scholar 

  18. Zou, M., & Pan, J. (2014). Wideband hybrid circularly polarised rectangular dielectric resonator antenna excited by modi_ed cross-slot. Electronics Letters, 50(16), 1123–1125.

    Article  Google Scholar 

  19. Das, G., Sharma, A., & Gangwar, R. K. (2018). Wideband self-complementary hybrid ring dielectric resonator antenna for MIMO applications. IET Microw Antennas Propag, 12(1), 108–114.

    Article  Google Scholar 

  20. Petosa, A. (2000). Design and analysis of multisegment dielectric resonator antennas. IEEE Transactions on Antennas and Propagation, 48(5), 738–742.

    Article  Google Scholar 

  21. Shum, S. M., & Luk, K. M. (1995). Stacked annular-ring dielectric resonator antenna excited by axi- symmetric coaxial probe. IEEE Transactions on Antennas and Propagation, 43(8), 889–892.

    Article  Google Scholar 

  22. Walsh, G., Young, S. D., & Long, S. A. (2006). An investigation of stacked an embedded cylindrical dielectric resonator antennas. IEEE Antennas and Wireless Propagation Letters, 5(5), 130–133.

    Article  Google Scholar 

  23. Fang, X. S., Leung, K. W., Lim, E. H., & Chen, R. S. (2010). Compact differential rectangular dielectric resonator antenna. IEEE Antennas Wireless Propag. Lett., 9, 662–665.

    Article  Google Scholar 

  24. Coulibaly, Y., Denidni, T. A., & Talbi, L. (2006).Wideband impedance bandwidth hybrid dielectric resonator antenna for X-band applications. In: Proceedings IEEE Antennas Propag Society Symp Albuquerque NM, 2429–2432.

  25. Luk, K. M., & Leung, K. W. (2003). Dielectric resonator antennas. Research Studies Press Ltd.

    Google Scholar 

  26. Hu, P. F., Pan, Y. M., Zhang, X. Y., & Zhen, S. Y. (2016). A compact filtering dielectric resonator antenna with wide bandwidth and high gain. IEEE Transactions on Antennas and Propagation, 64(8), 3645–3651.

    Article  MathSciNet  MATH  Google Scholar 

  27. Gupta, A., & Gangwar, R. K. (2016). Design, fabrication, and measurement of dual-segment rectangular dielectric resonator antenna excited with conformal strip for s band application. International Journal of Electromagnetic Waveguides, 36(4), 236–248.

    Article  Google Scholar 

  28. Peng Fei, Hu., Pan, Y. M., Leung, K. W., & Zhang, X. Y. (2018). Wide-/dual-band omnidirectional filtering dielectric resonator antennas. IEEE Transactions on Antennas and Propagation, 66(5), 2622–2627.

    Article  Google Scholar 

  29. Fang, X. S., & Chen, S. M. (2019). Design of the wide dual band rectangular souvenir dielectric resonator antenna. IEEE Access, 7, 161621–161629.

    Article  Google Scholar 

  30. Fang, X. S., Shi, K. P., & Sun, Y. X. (2020). Design of the single-/dual-port wideband differential dielectric resonator antenna using higher-order mode. IEEE Antennas Wireless Propag Letter, 19, 1605–1609.

    Article  Google Scholar 

  31. Iqbal, J., Illahi, U., Yasin, M. N. M., Albreem, M. A., & Akbar, M. F. (2022). Bandwidth enhancement by using parasitic patch on dielectric resonator antenna for sub-6 GHz 5G NR bands application. Alexandria Engineering Journal, 61, 5021–5032.

    Article  Google Scholar 

Download references

Funding

The author declares that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Study conception, design, Material preparation, data collection and analysis were performed by Dr. EV (Only).

Corresponding author

Correspondence to E Vinodha.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Ethical approval

Followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinodha, E. Bandwidth Enhancement Scheme for a Low Profile Rectangular Dielectric Resonator Antenna with a Flagpole Shaped Microstrip Feed. Wireless Pers Commun 132, 1751–1764 (2023). https://doi.org/10.1007/s11277-023-10661-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10661-4

Keywords

Navigation