Skip to main content
Log in

High Gain Compact Multiband Cavity-Backed SIW and Metamaterial Unit Cells with CPW Feed Antenna for S, and Ku Band Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A compact multiband cavity-backed substrate integrated waveguide (SIW) and metamaterial antenna with coplanar waveguide (CPW) feed is designed for S and Ku bands thereby providing low and high frequency applications. Designing simultaneous achievement of high gain in S band and Ku band antennas are challenging task, but the proposed antenna overcomes this limitation. The proposed antenna has a ground structure with radiating T-shaped stub opposite to the feed line and a combination of SIW and metamaterial. SIW and complementary square split ring resonator (CSSRR) are used to enhance efficiency, directivity, gain and bandwidth. The proposed antenna structure uses FR-4 epoxy as the substrate material with Ɛr = 4.4 with a dimension of 40 × 40 × 1.6 mm and analyzed using ANSYS HFSS. The designed antenna resonates at three frequencies (i.e.), 4.23, 13.63 and 17.05 GHz with a gain greater than 5 dBi and efficiency greater than 80%. It is suitable for S band (ISM, WLAN, WiMax) and Ku band (radar, satellite communications) applications. The designed antenna is linearly polarized with high gain and efficiency at both the bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Panda, R. A., Gudla, S., Dash, P., Rani, S., & Mishra, D. (2020). 5-Element biconcave patch antenna array with DGS for Ku band application. Materials Today: Proceedings, 27, 546–549.

    Google Scholar 

  2. Sun, Y., Dang, F., Yuan, C., He, J., Zhang, Q., & Zhao, X. (2020). A beam-steerable lens antenna for Ku-band high-power microwave applications. IEEE Transactions on Antennas and Propagation, 68(11), 7580–7583.

    Article  Google Scholar 

  3. Mishra, G., Sharma, S. K., Chieh, J. C. S., & Olsen, R. B. (2020). Ku-band dual linear-polarized 1-D beam steering antenna using parabolic-cylindrical reflector fed by a phased array antenna. IEEE Open Journal of Antennas and Propagation, 1, 57–70.

    Article  Google Scholar 

  4. Sun, Y., He, J., Yuan, C., Zhang, Q., Zhao, X., & Yu, L. (2019). Ku-band radial-line continuous transverse stub antenna with transmit-array lens for high-power microwave application. IEEE Transactions on Antennas and Propagation, 68(3), 2050–2059.

    Google Scholar 

  5. Ramachandran, T., Faruque, M. R. I., & Ahamed, E. (2019). Composite circular split ring resonator (CSRR)-based left-handed metamaterial for C-and Ku-band application. Results in Physics, 14, 102435.

    Article  Google Scholar 

  6. Salamin, M. A., Ali, W. A., Das, S., & Zugari, A. (2019). Design and investigation of a multi-functional antenna with variable wideband/notched UWB behavior for WLAN/X-band/UWB and Ku-band applications. AEU-International Journal of Electronics and Communications, 111, 152895.

    Article  Google Scholar 

  7. Mahendran, K., Gayathiri, R., & Sudarsan, H. (2021). Design of multi band triangular microstrip patch antenna with triangular split ring resonator for S band, C band and X band applications. Microprocessors and Microsystems, 80, 103400.

  8. Ketavath, K. N. (2019). Enhancement of gain with coplanar concentric ring patch antenna. Wireless Personal Communications, 108(3), 1447–1457.

    Article  Google Scholar 

  9. Geetharamani, G., & Aathmanesan, T. (2020). Design of metamaterial antenna for 2.4 GHz WiFi applications. Wireless Personal Communications, 113, 2289–2300.

  10. Rajkumar, R., & Kommuri, U. K. (2018). A triangular complementary split ring resonator based compact metamaterial antenna for multiband operation. Wireless Personal Communications, 101(2), 1075–1089.

    Article  Google Scholar 

  11. Chaturvedi, D., & Raghavan, S. (2018). A half-mode SIW cavity-backed semi-hexagonal slot antenna for WBAN application. IETE Journal of Research, 65(5), 582–588.

    Article  Google Scholar 

  12. Chaturvedi, D., & Raghavan, S. (2017). A dual-band half-mode substrate integrated waveguide-based antenna for WLAN/WBAN applications. International Journal of RF and Microwave, 28(1), 1–9.

    Google Scholar 

  13. Cheng, T., Jiang, W., Gong, S., & Yaqing, Yu. (2019). Broadband SIW cavity-backed modified dumbell-shaped slot antenna. IEEE Antennas and Wireless Propagation Letters, 18(5), 936–940.

    Article  Google Scholar 

  14. Jin, C., Shen, Z., Li, R., & Alphones, A. (2014). Compact circularly polarized antenna based on quarter-mode substrate integrated waveguide sub-array. IEEE Transactions on Antennas and Propagation, 62(2), 963–967.

    Article  Google Scholar 

  15. Anand, S., & Rokhini, D. (2019). A double line SIW cavity backed antenna for WLAN applications. International Journal of RF and Microwave, 29(9), 1–9.

    Google Scholar 

  16. Dashti, H., & Neshati, M. H. (2018). Input impedance modeling of patch and semi-rectangular substrate integrated waveguide cavity hybrid antenna. International Journal of Electronics and Communications, 89, 1–5.

    Article  Google Scholar 

  17. Caytan, O., Lemey, S., Agneessens, S., Ginste, D. V., Demeester, P., Loss, C., et al. (2016). Half-mode substrate-integrated-waveguide cavity-backed slot antenna on cork substrate. IEEE Antennas and Wireless Propagation Letters, 15, 162–165.

    Article  Google Scholar 

  18. Chaturvedi, D., Kumar, A., & Raghavan, S. (2018). An integrated SIW cavitybacked slot antenna-triplexer. IEEE Antennas and Wireless Propagation Letters, 17(8), 1557–1560.

    Article  Google Scholar 

  19. Wen, Y.-Q., Wang, B.-Z., & Ding, X. (2016). Wide-beam SIW-slot antenna for wide-angle scanning phased array. IEEE Antennas and Wireless Propagation Letters, 15, 1638–1641.

    Article  Google Scholar 

  20. Yan, S., Soh, P. J., & Vandenbosch, G. A. E. (2015). Dual-band textile MIMO antenna based on substrate-integrated waveguide (SIW) technology. IEEE Transactions on Antennas and Propagation, 63(11), 4640–4647.

    Article  MathSciNet  Google Scholar 

  21. Venkateswara Rao, M., Madhav, B. T. P., Anilkumar, T., & Prudhvi Nadh, B. (2018). Metamaterial inspired quad band circularly polarized antenna for WLAN/ISM/Bluetooth/WiMAX and satellite communication applications. International Journal of Electronics and Communications, 97, 229–241.

    Article  Google Scholar 

  22. Huang, He., Liu, Y., Zhang, S., & Gong, S. (2015). Multiband metamaterial-loaded monopole antenna for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 14, 662–665.

    Article  Google Scholar 

  23. Li, Ke., Zhu, C., Li, L., Cai, Y.-M., & Liang, C.-H. (2013). Design of electrically small metamaterial antenna with ELC and EBG loading. IEEE Antennas and Wireless Propagation Letter, 12, 678–681.

    Article  Google Scholar 

  24. Si, L.-M., Zhu, W., & Sun, H.-J. (2013). A compact, planar, and CPW-fed metamaterial-inspired dual-band. IEEE Antennas and Wireless Propagation Letters, 12, 305–308.

    Article  Google Scholar 

  25. Zhu, C., Li, T., Li, Ke., Zi-Jian, Su., Wang, X., Zhai, H.-Q., et al. (2015). Electrically small metamaterial-inspired tri-band antenna with meta-mode. IEEE Antennas and Wireless Propagation Letters., 14, 1738–1741.

    Article  Google Scholar 

  26. Ahila Priyadharshini, R., Prashalee, P. & Padhmashree, V. (2019). Dual band antenna using artificial magnetic conductor. In: International Conference on Recent Trends in Electrical, Control and Communication (pp. 110–114).

  27. Pandit, S., Mohan, A., & Ray, P. (2017). A low-profile high-gain substrate-integrated waveguide-slot antenna with suppressed cross polarization using metamaterial. IEEE Antennas and Wireless Propagation Letters, 16, 1614–1617.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Anand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, S., Prashalee, P. High Gain Compact Multiband Cavity-Backed SIW and Metamaterial Unit Cells with CPW Feed Antenna for S, and Ku Band Applications. Wireless Pers Commun 118, 1621–1634 (2021). https://doi.org/10.1007/s11277-021-08107-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08107-w

Keywords

Navigation