Skip to main content
Log in

A Triangular Complementary Split Ring Resonator Based Compact Metamaterial Antenna for Multiband Operation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a triangular complementary split ring resonator (TCSRR) based compact metamaterial antenna for multiband operation is presented. TCSRR is used to achieve a compact antenna structure. The proposed antenna consists of a trapezoidal radiating patch with partial ground plane and loaded TCSRR. The trapezoidal radiating patch is responsible for lower and higher frequencies, wherein the two inner resonance frequencies are obtained by loading TCSRR structure. The negative permittivity characteristics of the TCSRR structure are demonstrated through waveguide setup method. The proposed antenna with compact size of 25 × 25 × 1.6 mm3 is developed and tested. The measured and simulated results are good in agreement with each other and it covers 2.4/5.2 GHz (WLAN), 2.5 GHz (WiMAX), 7.4 GHz (X-band downlink) and 8.2 GHz (ITU band) simultaneously. The proposed antenna design has good radiation pattern for both E-plane and H-plane in all the desired frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chen, H., Yang, X., Yin, Y. Z., Fan, S. T., & Wu, J. J. (2013). Triband planar monopole antenna with compact radiator for WLAN WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 12, 1440–1443. https://doi.org/10.1109/LAWP.2013.2287312.

    Article  Google Scholar 

  2. Liu, H. W., Ku, C. H., & Yang, C. F. (2010). Novel CPW-fed planar monopole antenna for WiMAX/WLAN applications. IEEE Antennas and Wireless Propagation Letters, 9, 240–243. https://doi.org/10.1109/LAWP.2010.2044860.

    Article  Google Scholar 

  3. Zhang, X. Q., Jiao, Y. C., & Wang, W. H. (2012). Compact wide tri-band slot antenna for WLAN/WiMAX applications. Electronics Letters, 48(2), 64. https://doi.org/10.1049/el.2011.3376.

    Article  Google Scholar 

  4. Abutarboush, H. F., Nasif, H., Nilavalan, R., & Cheung, S. W. (2012). Multiband and wideband monopole antenna for GSM900 and other wireless applications. IEEE Antennas and Wireless Propagation Letters, 11, 539–542. https://doi.org/10.1109/LAWP.2012.2198429.

    Article  Google Scholar 

  5. Mehdipour, A., & Sebak, A. (2012). Compact multiband planar antenna for 2.4/3.5/5.2/5.8-GHz wireless applications. IEEE Antennas and Wireless Propagation Letters, 11, 144–147.

    Article  Google Scholar 

  6. Sun, X. L., Liu, L., Cheung, S. W., & Yuk, T. I. (2012). Dual-band antenna with compact radiator for 2.4/5.2/5.8 GHz WLAN applications. IEEE Transactions on Antennas and Propagation, 60(12), 5924–5931. https://doi.org/10.1109/TAP.2012.2211322.

    Article  Google Scholar 

  7. Varadhan, C., Pakkathillam, J. K., Kanagasabai, M., Sivasamy, R., Natarajan, R., & Palaniswamy, S. K. (2013). Triband antenna structures for RFID systems deploying fractal geometry. IEEE Antennas and Wireless Propagation Letters, 12, 437–440. https://doi.org/10.1109/LAWP.2013.2254458.

    Article  Google Scholar 

  8. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84(18), 4184–4187. https://doi.org/10.1103/PhysRevLett.84.4184.

    Article  Google Scholar 

  9. Caloz, C., & Itoh, T. (2006). Electromagnetic metamaterials: Transmission line theory and microwave applications (1st ed.). Hoboken, NJ: Wiley-IEEE Press. ISBN-10: 0471669857.

  10. Marqués, R., Martín, F., & Sorolla, M. (2007) Metamaterials with negative parameters: Theory, design and microwave applications. Hoboken, NJ: Wiley. ISBN: 978-0-471-74582-2.

  11. Alici, K. B., & Ozbay, E. (2007). Electrically small split ring resonator antennas. Journal of Applied Physics, 101(8), 1–5. https://doi.org/10.1063/1.2722232.

    Article  Google Scholar 

  12. Barbuto, M., Bilotti, F., & Toscano, A. (2012). Design of a multifunctional SRR-loaded printed monopole antenna. International Journal of RF and Microwave Computer-Aided Engineering, 22(4), 552–557. https://doi.org/10.1002/mmce.20645.

    Article  Google Scholar 

  13. Gemio, J., Parrón, J., De Paco, P., Junkin, G., Marin, J., & Menéndez, O. (2010). A split-ring-resonator loaded monopole for triple band applications. Journal of Electromagnetic Waves and Applications, 24(2–3), 241–250. https://doi.org/10.1163/156939310790735705.

    Article  Google Scholar 

  14. Rajeshkumar, V., & Raghavan, S. (2015). A compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications. AEU—International Journal of Electronics and Communications, 69(1), 274–280. https://doi.org/10.1016/j.aeue.2014.09.01.

    Google Scholar 

  15. Basaran, S. C., Olgun, U., & Sertel, K. (2013). Multiband monopole antenna with complementary split-ring resonators for WLAN and WiMAX applications. Electronics Letters, 49(10), 636–638. https://doi.org/10.1049/el.2013.0357.

    Article  Google Scholar 

  16. Ntaikos, D. K., Bourgis, N. K., & Yioultsis, T. V. (2011). Metamaterial-based electrically small multiband planar monopole antennas. IEEE Antennas and Wireless Propagation Letters, 10, 963–966. https://doi.org/10.1109/LAWP.2011.2167309.

    Article  Google Scholar 

  17. Kang, L., Wang, H., Wang, X. H., & Shi, X. (2014). Compact ACS-fed monopole antenna with rectangular SRRs for tri-band operation. Electronics Letters, 50(16), 1112–1114. https://doi.org/10.1049/el.2014.1771.

    Article  Google Scholar 

  18. Rajkumar, R., & Usha Kiran, K. (2016). A compact metamaterial multiband antenna for WLAN/WiMAX/ITU band applications. AEU—International Journal of Electronics and Communications, 70(5), 599–604. https://doi.org/10.1016/j.aeue.2016.01.025.

    Article  Google Scholar 

  19. Falcone, F., Lopetegi, T., & Baena, J. (2004). Effective negative-/spl epsiv/stopband microstrip lines based on complementary split ring resonators. IEEE Microwave and Wireless Components Letters, 14(6), 280–282. https://doi.org/10.1109/LMWC.2004.828029.

    Article  Google Scholar 

  20. Falcone, F., Lopetegi, T., Laso, M. A. G., Baena, J. D., Bonache, J., Beruete, M., et al. (2004). Babinet principle applied to the design of metasurfaces and metamaterials. Physical Review Letters, 93(19), 2–5. https://doi.org/10.1103/PhysRevLett.93.197401.

    Article  Google Scholar 

  21. Smith, D. R., Schultz, S., Markoš, P., & Soukoulis, C. M. (2002). Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Physical Review B, 65, 195104. https://doi.org/10.1103/PhysRevB.65.195104.

    Article  Google Scholar 

  22. Smith, D. R., Vier, D. C., Koschny, T., & Soukoulis, C. M. (2005). Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 71(3), 1–11. https://doi.org/10.1103/PhysRevE.71.03661.

    Google Scholar 

  23. Chen, H., Zhang, J., Bai, Y., Luo, Y., Ran, L., Jiang, Q., et al. (2006). Experimental retrieval of the effective parameters of metamaterials based on a waveguide method. Optics Express, 14(26), 12944–12949. https://doi.org/10.1364/OE.14.012944.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rengasamy Rajkumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumar, R., Kommuri, U.K. A Triangular Complementary Split Ring Resonator Based Compact Metamaterial Antenna for Multiband Operation. Wireless Pers Commun 101, 1075–1089 (2018). https://doi.org/10.1007/s11277-018-5749-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5749-7

Keywords

Navigation