Skip to main content
Log in

On the Performance of Downlink Multiuser Cognitive Radio Inspired Cooperative NOMA

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper is considered as an application of a centralized control non orthogonal multiple access (NOMA) based cognitive radio network. Here, a base station (BS) sends simultaneously two information signals by employing the superposition coding scheme to two different types of users, i.e., group of near users and one far user. The near users, namely, the secondary users, exchange cooperatively their own received information among themselves ensuring the realization of maximal diversity gain. Besides, they are responsible for relaying information to the far user, namely, the primary user. One potential secondary user is selected to decode and forward the BS information signal to the primary user and the rest of the secondary users to reinforce the reliability, as well as, mitigate the non-decodable messages. Two equivalent cases of a relay (secondary user) selection scheme are proposed. In the first case, the selection aims at maximizing the minimum of the joint secondary to secondary (S to S) and secondary to primary (S to P) channels’ coefficients under a certain limit of interference condition. In the second case, the selection aims at maximizing the minimum of the BS to S and S to S paths while a certain quality of service of the primary user is strictly guaranteed. Assuming Rayleigh fading channels, new closed form expressions are derived for the achievable capacity associated with the two information signals. Simulation results reveal the advantage of our proposed schemes over the conventional orthogonal max–min approach and confirm the validity of our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. It is reasonable to assume that all of the near secondary nodes can decode the BS signals correctly.

References

  1. Ding, G. Z., Yang, Z., Fan, P., & Poor, H. V. (2014). On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Processing Letters, 21(12), 1501–1505.

    Article  Google Scholar 

  2. Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013). System level performance evaluation of downlink non-orthogonal multiple access (NOMA). In Proceedings of IEEE annual symposium on personal indoor mobile radio communications (PIMRC), London, U.K., (pp. 611–615).

  3. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In Proceedings of IEEE vehicle technology conference, Dresden, Germany.

  4. Ding, Z., Fan, P., & Poor, V. (2015). Impact of user pairing on 5G non-orthogonal multiple access downlink transmissions. IEEE Transactions on Vehicle Technology 99, 1.

  5. Timotheou, S., & Krikidis, I. (2015). Fairness for non-orthogonal multiple access in 5G systems. IEEE Signal Processing Letters, 22(10), 1647–1651.

    Article  Google Scholar 

  6. Al-Imari, M., Xiao, P., Imran, M., & Tafazolli, R. (2014). Uplink non-orthogonal multiple access for 5G wireless networks. In Proceedings on 11th international symposium wireless communication systems (ISWCS), (pp. 781–785).

  7. Choi, J. (2014). Non-orthogonal multiple access in downlink coordinated two point systems. IEEE Communications Letters, 18(2), 313–316.

    Article  Google Scholar 

  8. Wei, Z., Yuan, J., Ng, D.W.K., Elkashlan, M., & Ding, Z. (2016). A survey of downlink non-orthogonal multiple access for 5G wireless communication networks. arXiv:1609.01856v1 [cs.IT].

  9. Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: an information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.

    Article  Google Scholar 

  10. Seyfi, Mehdi, Muhaidat, Sami, & Liang, Jie. (2013). Relay selection in cognitive radio networks with interference constraints. IET Communications, 7(10), 922–930.

    Article  Google Scholar 

  11. Liu, Y., Ding, Z., Elkashlan, M., & Yuan, J. (2016). Non-orthogonal multiple access in large-scale underlay cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(12), 10152–10157.

    Article  Google Scholar 

  12. Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465.

    Article  Google Scholar 

  13. Kim, J.-B., & Lee, I.-H. (2015). Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Communications Letters, 19(11), 2037–2040.

    Article  Google Scholar 

  14. Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34(4), 938–953.

    Article  Google Scholar 

  15. Men, J., & Ge, J. (2015). Non-orthogonal multiple access for multiple-antenna relaying networks. IEEE Communications Letters, 19(10), 1686–1689.

    Article  Google Scholar 

  16. Ding, Z., Dai, H., & Poor, H. V. (2016). Relay selection for cooperative NOMA. IEEE Wireless Communication Letters, 5(4), 416–419.

    Article  Google Scholar 

  17. Kim, J.-B., & Lee, I.-H. (2015). Capacity analysis of cooperative relaying systems using non-orthogonal multiple access. IEEE Communications Letters, 19(11), 1949–1952.

    Article  Google Scholar 

  18. Ding, Z., Adachi, F., & Poor, H. V. (2016). The application of MIMO to non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(1), 537–552.

    Article  Google Scholar 

  19. Xu, M., Ji, F., & Wen, M. (2016). Novel receiver design for the cooperative relaying system with non-orthogonal multiple access. IEEE Communications Letters, 20(8), 1679–1682.

    Article  Google Scholar 

  20. Zhang, J., et al. (2017). Performance analysis of relay assisted cooperative non-orthogonal multiple access systems. Submitted to IEEE Wireless Communication Letters.

  21. Xu, P., Ding, Z., Dai, X., & Poor, H. (2015). NOMA: An information theoretic perspective,” [Online]. http://arxiv.org/abs/1504.07751.

  22. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). Cambridge: Academic Press.

    MATH  Google Scholar 

  23. David, H. A., & Nagaraja, H. N. (2003). Order statistics (3rd ed.). New Jeresy: Wiley.

    Book  MATH  Google Scholar 

  24. Hildebrand, E. (1987). Introduction to numerical analysis. New York, NY: Dover.

    MATH  Google Scholar 

  25. Sun, Q., Han, S., Chin-Lin, I., & Pan, Z. (2015). On the ergodic capacity of MIMO NOMA systems. IEEE Wireless Communications Letters, 4(4), 405–408.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shady M. Ibraheem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Let \(\frac{{\left| {h_{ip} } \right|^{2} P_{R} - N_{0}^{2} {\mathbb{I}}}}{{\left| {h_{ip} } \right|^{2} P_{R} \left( {{\mathbb{I}} + 1} \right)}} > 0\), then, the R.V. \({\text{Z}}_{\text{i}}\) can be expressed by substitution as, \({\text{Z}}_{\text{i}} \triangleq \left( {min\left( {\gamma_{bi}^{\left( s \right)} ,\gamma_{ij} } \right)} \right) = min\left( {\frac{{\left| {h_{bi} } \right|^{2} P_{b} a_{si} }}{{N_{0}^{2} }},\frac{{\left| {h_{ij} } \right|^{2} P_{R} }}{{N_{0}^{2} }}\frac{{\left| {h_{ip} } \right|^{2} P_{R} - N_{0}^{2} {\mathbb{I}}}}{{\left| {h_{ip} } \right|^{2} P_{R} \left( {{\mathbb{I}} + 1} \right)}}} \right)\). Thus, we have to derive the CDF of \(\gamma_{bi}^{\left( s \right)} \;{\text{and}}\; \gamma_{ij}\), separately.

Let \(X_{i} = \frac{{\left| {h_{ip} } \right|^{2} P_{R} - N_{0}^{2} {\mathbb{I}}}}{{\left| {h_{ip} } \right|^{2} P_{R} \left( {{\mathbb{I}} + 1} \right)}}\), then, the CDF of \(X_{i}\) will take the form, \(Pr\left( {\frac{{\left| {h_{ip} } \right|^{2} P_{R} - N_{0}^{2} {\mathbb{I}}}}{{\left| {h_{ip} } \right|^{2} P_{R} \left( {{\mathbb{I}} + 1} \right)}} \le x} \right) \Rightarrow Pr\left( {\left| {h_{ip} } \right|^{2} P_{R} - N_{0}^{2} {\mathbb{I}} \le \left( {\left| {h_{ip} } \right|^{2} P_{R} \left( {{\mathbb{I}} + 1} \right)} \right)x} \right) \Rightarrow Pr\left( {\left| {h_{ip} } \right|^{2} \le \frac{{N_{0}^{2} {\mathbb{I}}}}{{P_{R} \left( {1 - x\left( {\left( {{\mathbb{I}} + 1} \right)} \right)} \right)}}} \right)\). Then, such that \(\left( {1 - x\left( {\left( {{\mathbb{I}} + 1} \right)} \right)} \right) > 0\), the CDF is,

\(F_{{X_{i} }} \left( {\frac{{N_{0}^{2} {\mathbb{I}}}}{{P_{R} \left( {1 - x\left( {\left( {{\mathbb{I}} + 1} \right)} \right)} \right)}}} \right) = 1 - \exp\left( { - \frac{{{{\Omega }}_{ip} N_{0}^{2} {\mathbb{I}}}}{{P_{R} \left( {1 - x\left( {\left( {{\mathbb{I}} + 1} \right)} \right)} \right)}}} \right)\).

Let \(Y_{ij} = \frac{{\left| {h_{ij} } \right|^{2} P_{R} }}{{N_{0}^{2} }}\), then, the probability density function (PDF) of \(Y_{i}\) can be expressed as,

\(f_{{Y_{ij} }} \left( y \right) = \frac{{N_{0}^{2} }}{{P_{R} {{\Omega }}_{ij} }}\exp\left( { - \frac{{N_{0}^{2} }}{{P_{R} {{\Omega }}_{ij} }}y} \right)\).

The CDF of \(\gamma_{ij} \triangleq X_{i} Y_{ij}\), \(j \in {\mathcal{N}} - \left\{ i \right\}\), can be calculated using the integral, \(F_{{\gamma_{ij} }} \left( z \right) = \mathop \int \limits_{0}^{\infty } F_{{X_{i} }} \left( {\frac{z}{x}} \right)f_{{Y_{ij} }} \left( x \right)dx\), as, \(F_{{\gamma_{ij} }} \left( z \right) = 1 - \mathop \int \limits_{0}^{\infty } \exp\left( { - \frac{{\Omega_{ip} N_{0}^{2} {\mathbb{I}}}}{{P_{R} \left( {1 - \frac{z}{x}\left( {\left( {{\mathbb{I}} + 1} \right)} \right)} \right)}}} \right)\frac{{N_{0}^{2} }}{{P_{R} \Omega_{ij} }}\exp\left( { - \frac{{N_{0}^{2} }}{{P_{R} \Omega_{ij} }}x} \right)dx = 1 - \mathop \int \limits_{{z\left( {\left( {{\mathbb{I}} + 1} \right)} \right)}}^{\infty } \exp\left( { - \frac{{\Omega_{ip} N_{0}^{2} {\mathbb{I}}x}}{{P_{R} \left( {x - z\left( {\left( {{\mathbb{I}} + 1} \right)} \right)} \right)}}} \right)\frac{{N_{0}^{2} }}{{P_{R} \Omega_{ij} }}\exp\left( { - \frac{{N_{0}^{2} }}{{P_{R} \Omega_{ij} }}x} \right)dx\), such that \(x > z\left( {\left( {{\mathbb{I}} + 1} \right)} \right)\), \(\mathop \int \limits_{0}^{\infty } \frac{{N_{0}^{2} }}{{P_{R} \Omega_{ij} }}\exp\left( { - \frac{{N_{0}^{2} }}{{P_{R} \Omega_{ij} }}x} \right)dx = 1\). Putting \(\theta = x - z\left( {\left( {{\mathbb{I}} + 1} \right)} \right)\), the CDF of \(\gamma_{ij}\) becomes, \(F_{{\gamma_{ij} }} \left( z \right) = 1 - \frac{{\Omega_{ij} N_{0}^{2} }}{{P_{R} }}\exp\left( { - \frac{{N_{0}^{2} }}{{P_{R} }}\left( {{\mathbb{I}}{{\Omega }}_{ip} + z\left( {{\mathbb{I}} + 1} \right){{\Omega }}_{ij} } \right)} \right) \times \mathop \int \limits_{0}^{\infty } \exp\left( { - \frac{{N_{0}^{2} }}{{P_{R} }}\left( {\Omega_{ij} \theta + \frac{{\Omega_{ip} z{\mathbb{I}}\left( {\left( {{\mathbb{I}} + 1} \right)} \right)}}{\theta }} \right)} \right)d\theta\).

Thus, \(\bar{F}_{{\gamma_{ij} }} \left( z \right)\) follows after some algebraic manipulations and by using [22, 3.471.9]. Similarly, the CDF of \(\gamma_{bi}^{\left( s \right)}\) can be expressed as,

\(F_{{\gamma_{bi}^{\left( s \right)} }} \left( z \right) = 1 - \exp\left( { - \frac{{{{\Omega }}_{bi} N_{0}^{2} z}}{{P_{b} a_{si} }}} \right) = 1 - \bar{F}_{{\gamma_{bi}^{\left( s \right)} }} \left( z \right)\). Consequently, the CDF of \({\text{Z}}_{\text{i}} \triangleq \left( {min\left( {\gamma_{bi} ,\gamma_{ij} } \right)} \right)\) is obtained as,

$$F_{{Z_{i} }} \left( z \right) = Pr\left( {\left( {\gamma_{bi}^{\left( s \right)} > z,\gamma_{ij} > z} \right)} \right) = 1 - \bar{F}_{{Z_{i} }} \left( z \right) = 1 - \bar{F}_{{\gamma_{bi}^{\left( s \right)} }} \left( z \right)\bar{F}_{{\gamma_{ij} }} \left( z \right).$$

Finally, by applying, \(Pr\left( {max_{i} \left( {Z_{i} } \right) \le z} \right) \Rightarrow max_{i} \left( {F_{{Z_{1} }} \left( z \right), F_{{Z_{2} }} \left( z \right), \ldots F_{{Z_{N} }} \left( z \right)} \right) = \mathop \prod \nolimits_{i = 1}^{N} F_{{Z_{i} }} \left( z \right)\), (17) follows and the proof is completed.

Appendix 2

From (20), let \(Z_{p} \triangleq \left( {min\left( {\gamma_{bi}^{\left( p \right)} ,\gamma_{ip} + \gamma_{bp} } \right)} \right) = min\left( {\frac{{\left| {h_{bi} } \right|^{2} P_{b} a_{sp} }}{{\left| {h_{bi} } \right|^{2} P_{b} a_{si} + N_{0}^{2} }},\frac{{\left| {h_{ip} } \right|^{2} P_{R} a_{ip} }}{{\left| {h_{ip} } \right|^{2} P_{R} a_{ij} + N_{0}^{2} }} + \frac{{\left| {h_{bp} } \right|^{2} P_{b} a_{sp} }}{{\left| {h_{bp} } \right|^{2} P_{b} a_{si} + N_{0}^{2} }}} \right)\), then, the CDF of the R.V. \(Z_{p}\) can be expressed as, \(F_{{Z_{p} }} \left( {z_{1} ,z_{2} } \right) = 1 - \bar{F}_{{Z_{p} }} \left( {z_{1} ,z_{2} } \right) = 1 - Pr\left( {\left( {\gamma_{bi}^{\left( p \right)} > z_{1} ,\gamma_{ip} + \gamma_{bp} > z_{2} } \right)} \right) = 1 - \bar{F}_{{\gamma_{bi}^{\left( p \right)} }} \left( {z_{1} } \right)\bar{F}_{{\gamma_{ip} + \gamma_{bp} }} \left( {z_{2} } \right)\), where \(\left\{ {\left\{ {\gamma_{bi}^{\left( p \right)} } \right\} \;{\text{and}}\; \left\{ {\gamma_{ip} + \gamma_{bp} } \right\}} \right\}\) are two disjoint events, \(z_{1} \;{\text{and}}\; z_{2}\) are two distinct predefined SINRs. When the communication requires one desired or predefined SINR level, \(z = z_{1} = z_{2}\), which leads to \(\bar{F}_{{Z_{p} }} \left( z \right) = \bar{F}_{{\gamma_{bi}^{\left( p \right)} }} \left( z \right)\bar{F}_{{\gamma_{ip} + \gamma_{bp} }} \left( z \right)\). Thus, we have to derive the CDF of \(\gamma_{bi}^{\left( p \right)} \;{\text{and}}\; \gamma_{ip} + \gamma_{bp}\), separately.

Let \(P_{b} = P_{R} = P\), \(\bar{F}_{{\gamma_{bi}^{\left( p \right)} }} \left( z \right)\) can be obtained simply as,

$$\bar{F}_{{\gamma_{bi}^{\left( p \right)} }} \left( z \right) = Pr\left( {\gamma_{bi}^{\left( p \right)} > z} \right) = Pr\left( {\frac{{\left| {h_{bi} } \right|^{2} Pa_{sp} }}{{\left| {h_{bi} } \right|^{2} Pa_{si} + N_{0}^{2} }} > z} \right) \Rightarrow \bar{F}_{{\gamma_{bi}^{\left( p \right)} }} \left( z \right) = Pr\left( {\left| {h_{bi} } \right|^{2} > \frac{{zN_{0}^{2} }}{{P\left( {a_{sp} - za_{si} } \right)}}} \right) = \exp\left( { - \frac{{{{\Omega }}_{bi} zN_{0}^{2} }}{{P\left( {a_{sp} - za_{si} } \right)}}} \right)$$

Since \(\gamma_{ip} \,\,and\,\, \gamma_{bp}\) are two disjoint random variables and \(\bar{F}_{{\gamma_{ip} + \gamma_{bp} }} \left( z \right) = Pr\left( {\frac{{\left| {h_{ip} } \right|^{2} Pa_{ip} }}{{\left| {h_{ip} } \right|^{2} Pa_{ij} + N_{0}^{2} }} + \frac{{\left| {h_{bp} } \right|^{2} Pa_{sp} }}{{\left| {h_{bp} } \right|^{2} Pa_{si} + N_{0}^{2} }} > z} \right)\), the CDF \(\bar{F}_{{\gamma_{ip} + \gamma_{bp} }} \left( z \right)\) can be determined using the integral, \(\bar{F}_{{\gamma_{ip} + \gamma_{bp} }} \left( z \right) = 1 - \mathop \int \limits_{0}^{\infty } F_{{\gamma_{bp} }} \left( {z - x} \right)f_{{\gamma_{ip} }} \left( z \right)dx\).

By following similar steps as \(\bar{F}_{{\gamma_{bi}^{\left( p \right)} }} \left( z \right)\), \(\bar{F}_{{\gamma_{bp} }} \left( z \right)\) and \(\bar{F}_{{\gamma_{ip} }} \left( z \right)\) will take the forms of, \(\bar{F}_{{\gamma_{bp} }} \left( z \right) = \exp\left( { - \frac{{{{\Omega }}_{bp} zN_{0}^{2} }}{{P\left( {a_{sp} - za_{si} } \right)}}} \right)\) and \(\bar{F}_{{\gamma_{ip} }} \left( z \right) = \exp\left( { - \frac{{{{\Omega }}_{ip} zN_{0}^{2} }}{{P\left( {a_{ip} - za_{ij} } \right)}}} \right)\), respectively.

Taking the derivative of \(F_{{\gamma_{ip} }} \left( z \right) = 1 - \bar{F}_{{\gamma_{ip} }} \left( z \right)\), the PDF can be expressed as, \(f_{{\gamma_{ip} }} \left( z \right) = \frac{{a_{ip} N_{0}^{2} }}{{P\left( {a_{ip} - za_{ij} } \right)^{2} }}\exp\left( { - \frac{{{{\Omega }}_{ip} zN_{0}^{2} }}{{P\left( {a_{ip} - za_{ij} } \right)}}} \right)\).\(\bar{F}_{{\gamma_{ip} + \gamma_{bp} }} \left( z \right) = 1 - \mathop \int \limits_{0}^{\infty } F_{{\gamma_{bp} }} \left( {z - x} \right)f_{{\gamma_{ip} }} \left( z \right)dx = \exp\left( {\frac{{\Omega_{ip} N_{0}^{2} }}{{Pa_{ij} }}} \right) + \underbrace {{\mathop \int \limits_{0}^{\infty } \frac{{a_{ip} N_{0}^{2} }}{{P\left( {a_{ip} - xa_{ij} } \right)^{2} }}\exp\left( { - \frac{{N_{0}^{2} }}{P}\left( {\frac{{\Omega_{ip} x}}{{\left( {a_{ip} - xa_{ij} } \right)}} + \frac{{\Omega_{bp} \left( {z - x} \right)}}{{\left( {a_{sp} - \left( {z - x} \right)a_{si} } \right)}}} \right)} \right)dx}}_{{{\mathcal{J}}\left( z \right)}}\).

The integral \({\mathcal{J}}\left( z \right)\) can be solved for certain \(z\) by numerical software programming or it can be approximated by expanding \(\exp\left( . \right)\) for \(\frac{{N_{0}^{2} }}{P} \ll 1\).

For arbitrary \(z \in \left[ {0,\infty } \right]\), since \(\frac{{\left| {h_{ip} } \right|^{2} Pa_{ip} }}{{\left| {h_{ip} } \right|^{2} Pa_{ij} + N_{0}^{2} }} \le \frac{{a_{ip} }}{{a_{ij} }}\), \(\frac{{\left| {h_{bp} } \right|^{2} Pa_{sp} }}{{\left| {h_{bp} } \right|^{2} Pa_{si} + N_{0}^{2} }} \le \frac{{a_{sp} }}{{a_{si} }}\) and noting that \(Pr\left( {\left( {\gamma_{ip} + \gamma_{bp} } \right) = z} \right) = 0\), i.e., for continuous R.V.s, \(\bar{F}_{{\gamma_{ip} + \gamma_{bp} }} \left( z \right)\) can be obtained by the following three cases:

  1. I.

    \(z < \frac{{a_{ip} }}{{a_{ij} }} < \frac{{a_{sp} }}{{a_{si} }}\)

In such a case, if \(\frac{{\left| {h_{bp} } \right|^{2} Pa_{sp} }}{{\left| {h_{bp} } \right|^{2} Pa_{si} + N_{0}^{2} }} > z\) or \(\frac{{\left| {h_{ip} } \right|^{2} Pa_{ip} }}{{\left| {h_{ip} } \right|^{2} Pa_{ij} + N_{0}^{2} }} > z\), then, \(Pr\left( {\frac{{\left| {h_{ip} } \right|^{2} Pa_{ip} }}{{\left| {h_{ip} } \right|^{2} Pa_{ij} + N_{0}^{2} }} + \frac{{\left| {h_{bp} } \right|^{2} Pa_{sp} }}{{\left| {h_{bp} } \right|^{2} Pa_{si} + N_{0}^{2} }} > z} \right) = 1\). Thus, \(\begin{aligned} \bar{F}_{{\gamma_{ip} + \gamma_{bp} }} \left( z \right) = Pr\left( {\frac{{\left| {h_{bp} } \right|^{2} Pa_{sp} }}{{\left| {h_{bp} } \right|^{2} Pa_{si} + N_{0}^{2} }} > z} \right) + Pr\left( {\frac{{\left| {h_{bp} } \right|^{2} Pa_{sp} }}{{\left| {h_{bp} } \right|^{2} Pa_{si} + N_{0}^{2} }} < z} \right)Pr\left( {\frac{{\left| {h_{ip} } \right|^{2} Pa_{ip} }}{{\left| {h_{ip} } \right|^{2} Pa_{ij} + N_{0}^{2} }} > z} \right) +\, Pr\left( {\frac{{\left| {h_{ip} } \right|^{2} Pa_{ip} }}{{\left| {h_{ip} } \right|^{2} Pa_{ij} + N_{0}^{2} }} < z} \right) \times \hfill \\ Pr\left( {\frac{{\left| {h_{bp} } \right|^{2} Pa_{sp} }}{{\left| {h_{bp} } \right|^{2} Pa_{si} + N_{0}^{2} }} < z} \right) \times Pr\left( {\frac{{\left| {h_{ip} } \right|^{2} Pa_{ip} }}{{\left| {h_{ip} } \right|^{2} Pa_{ij} + N_{0}^{2} }} + \frac{{\left| {h_{bp} } \right|^{2} Pa_{sp} }}{{\left| {h_{bp} } \right|^{2} Pa_{si} + N_{0}^{2} }} > z} \right) = \exp\left( { - \frac{{\Omega_{bp} zN_{0}^{2} }}{{P\left( {a_{sp} - za_{si} } \right)}}} \right) +\, \exp\left( { - \frac{{\Omega_{ip} zN_{0}^{2} }}{{P\left( {a_{ip} - za_{ij} } \right)}}} \right) - \hfill \\ \exp\left( { - \frac{{\Omega_{ip} zN_{0}^{2} }}{{P\left( {a_{ip} - za_{ij} } \right)}}} \right) \times \exp\left( { - \frac{{\Omega_{bp} zN_{0}^{2} }}{{P\left( {a_{sp} - za_{si} } \right)}}} \right) + \left( {\exp\left( {\frac{{\Omega_{ip} N_{0}^{2} }}{{Pa_{ij} }}} \right) + {\mathcal{J}}\left( z \right)} \right) \times \hfill \\ \left( {1 - \exp\left( { - \frac{{\Omega_{ip} zN_{0}^{2} }}{{P\left( {a_{ip} - za_{ij} } \right)}}} \right) - \exp\left( { - \frac{{\Omega_{bp} zN_{0}^{2} }}{{P\left( {a_{sp} - za_{si} } \right)}}} \right) + \exp\left( { - \frac{{\Omega_{ip} zN_{0}^{2} }}{{P\left( {a_{ip} - za_{ij} } \right)}}} \right) \times \exp\left( { - \frac{{\Omega_{bp} zN_{0}^{2} }}{{P\left( {a_{sp} - za_{si} } \right)}}} \right)} \right) \hfill \\ \end{aligned}\)

  1. II.

    \(\frac{{a_{ip} }}{{a_{ij} }} < z < \frac{{a_{sp} }}{{a_{si} }}\)

$$\begin{aligned} \bar{F}_{{\gamma_{ip} + \gamma_{bp} }} \left( z \right) & = \Pr \left( {\frac{{\left| {h_{bp} } \right|^{2} Pa_{sp} }}{{\left| {h_{bp} } \right|^{2} Pa_{si} + N_{0}^{2} }} > z} \right) + \Pr \left( {\frac{{\left| {h_{bp} } \right|^{2} Pa_{sp} }}{{\left| {h_{bp} } \right|^{2} Pa_{si} + N_{0}^{2} }} < z} \right) \times \Pr \left( {\frac{{\left| {h_{ip} } \right|^{2} Pa_{ip} }}{{\left| {h_{ip} } \right|^{2} Pa_{ij} + N_{0}^{2} }} + \frac{{\left| {h_{bp} } \right|^{2} Pa_{sp} }}{{\left| {h_{bp} } \right|^{2} Pa_{si} + N_{0}^{2} }} > z} \right) \\ & = \exp \left( { - \frac{{\Omega_{bp} zN_{0}^{2} }}{{P\left( {a_{sp} - za_{si} } \right)}}} \right) + \left( {\exp \left( {\frac{{\Omega_{ip} N_{0}^{2} }}{{Pa_{ij} }}} \right) + {\mathcal{J}}\left( z \right)} \right) - \left( {\exp \left( {\frac{{\Omega_{ip} N_{0}^{2} }}{{Pa_{ij} }}} \right) + {\mathcal{J}}\left( z \right)} \right) \times \exp \left( { - \frac{{\Omega_{bp} zN_{0}^{2} }}{{P\left( {a_{sp} - za_{si} } \right)}}} \right) \\ \end{aligned}$$
  1. III.

    \(\frac{{a_{ip} }}{{a_{ij} }} < \frac{{a_{sp} }}{{a_{si} }} < z\)

\(\bar{F}_{{\gamma_{ip} + \gamma_{bp} }} \left( z \right) = Pr\left( {\frac{{\left| {h_{ip} } \right|^{2} Pa_{ip} }}{{\left| {h_{ip} } \right|^{2} Pa_{ij} + N_{0}^{2} }} + \frac{{\left| {h_{bp} } \right|^{2} Pa_{sp} }}{{\left| {h_{bp} } \right|^{2} Pa_{si} + N_{0}^{2} }} > z} \right) = \left( {\exp\left( {\frac{{\Omega_{ip} N_{0}^{2} }}{{Pa_{ij} }}} \right) + {\mathcal{J}}\left( z \right)} \right)\).

The proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokair, M., Saad, W. & Ibraheem, S.M. On the Performance of Downlink Multiuser Cognitive Radio Inspired Cooperative NOMA. Wireless Pers Commun 101, 875–895 (2018). https://doi.org/10.1007/s11277-018-5730-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-5730-5

Keywords

Navigation