Skip to main content
Log in

Dynamic inter-domain MDS approach with secure seamless handover based on IEEE 802.21 MIH

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The accessibility of available wireless access technologies with increasing demand for real time multimedia application becomes an essential part for mobile communication. Mobile users resourcefully utilize the heterogeneous environment for best quality of service (Qos) anywhere and anytime. Efficient handover optimization and intelligent mobility management is a key requirement for designing next generation wireless networks. Therefore, a novel IEEE 802.21 media independent handover (MIH) standard is adopted to provide an associated service for intelligent handover procedures. In addition, dynamic mobility management decision server (MDS) and IEEE 802.21a security extension for MIH services are also integrated in the proposed architectures to support fast, seamless and secure handover optimization in inter-domain mobility. Simulation results prove that the presented work resourcefully minimizes the packet loss, unnecessary handover probability and vertical handover delay by avoiding time consuming scanning process for target network discovery. The system thus achieves Qos guarantee by balancing the network load and throughput improvement for different applications with Proxy MIPv6 mobility management protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yan, X., Sekercioglu, A., & Narayanan, S. (2010). A survey of vertical handover decision algorithms in fourth generation heterogeneous wireless networks. Computer Networks, 54, 1848–1863.

    Article  MATH  Google Scholar 

  2. McNair, J., & Zhu, F. (2004). Vertical handoffs in fourth generation multinetwork environments. IEEE Wireless Communication, 11(3), 8–15.

    Article  Google Scholar 

  3. Zahran, A. H. & Liang, B. (2005). Performance evaluation framework for vertical handoff algorithms in heterogeneous networks. In Proceeding of 2005 IEEE international conference on communications (ICC’05), Korea (pp. 173–178).

  4. Corujo, D., Guimaraes, C., Santos, B., & Aguiar, R. L. (2011). Using an open-source IEEE 802.21 implementation for network-based localized mobility management. IEEE Communication Magazine, 49, 114–123.

    Article  Google Scholar 

  5. Bellavista, P., Corradi, A., & Giannelli, C. (2009). Mobility aware management of internet connectivity in always best served wireless scenarios. Mobile Network Applications, 14, 18–34.

    Article  Google Scholar 

  6. Zhang, J., & Ansari, N. (2011). On assuring end-to-end QoE in next generation networks: challenges and a possible solution. IEEE Communications Magazine, 49(7), 185–191.

    Article  Google Scholar 

  7. Salsano, S., Polidoro, A., Mingardi, C., Niccolini, S., & Veltri, L. (2008). SIP-based mobility management in next generation networks. IEEE Wireless Communication, 15, 92–99.

    Article  Google Scholar 

  8. Kong, K. S., Han, Y. H., Shin, M. K., & You, H. (2008). Mobility management for all-IP mobile networks: Mobile IPv6 vs. proxy mobile IPv6. IEEE Wireless Communications, 15, 36–45.

    Article  Google Scholar 

  9. Song, H., Kim, J., Lee, J. & Lee, H. S. (2011). Analysis of vertical handover latency for IEEE 802.21—Enabled proxy mobile IPv6. In Proceeding of IEEE ICACT, Korea (pp. 1059–1063).

  10. Buiati, F., Villalba, L. J. G., Corujo, D., Sargento, S., & Aguiar, R. L. (2011). IEEE 802.21 information services deployment for heterogeneous mobile environments. IET Communications, 5(18), 2721–2729.

    Article  Google Scholar 

  11. Kwon, T. T., Gerla, M., Das, S., & Das, S. (2002). Mobility management for VoIP service: Mobile IP vs. SIP. IEEE Wireless Communication, 9, 66–75.

    Article  Google Scholar 

  12. Liu, M., Li, Z., Guo, X., & Dutkiewiez, E. (2008). Performance analysis and optimization of handoff algorithms in heterogeneous wireless networks. IEEE Transaction on Mobile Computing, 7(7), 846–857.

    Article  Google Scholar 

  13. Wang, Y. H., Hsu, C. P., Huang, K. F. & Huang W. C. (2008). Handoff decision scheme with guaranteed Qos in heterogeneous network. In First IEEE international conference on Ubi-media computing, China (pp. 138–143).

  14. Singhrova, A., & Prakash, N. (2012). Vertical handoff decision algorithm for improved quality of service in heterogeneous wireless networks. IET Communications, 6(2), 211–223.

    Article  MathSciNet  MATH  Google Scholar 

  15. Jailton, J., Carvalho, T., Valante, W., Natalino, C., Frances, R., & Dias, K. (2013). A quality of experience handover architecture for heterogeneous mobile wireless multimedia networks. IEEE Communication Magazine, 51, 152–159.

    Article  Google Scholar 

  16. Hameed, A. H., Mostafa, S. A., & Mohammed, M. A. (2013). Simulation and evaluation of WIMAX handover over homogeneous and heterogeneous networks. American Journal of Networks and Communications, 2(3), 73–80.

    Article  Google Scholar 

  17. Taniuchi, K., Ohba, Y., Fajardo, V., Das, S., Tauil, M., Cheng, Y.-H., et al. (2009). IEEE 802.21: Media independent handover: features, applicability and realization. IEEE Communication Magazine, 47, 112–120.

    Article  Google Scholar 

  18. Gawali, D. (2012). Analyzing issues in mobile WiMAX handover using qualnet simulator. International Journal of Basic and Applied Science, 01(02), 239–246.

    Google Scholar 

  19. Dutta, A., Famolari, D., Das, S., Ohba, Y., Fajardo, V., Taniuchi, K., et al. (2008). Media-independent pre-authentication supporting secure interdomain handover optimization. IEEE Wireless Communication, 15, 55–64.

    Article  Google Scholar 

  20. Kim, Y., Pack, S., Kang, C. G., & Park, S. (2011). An enhanced information server for seamless vertical handover in IEEE 802.21 MIH networks. Computer Networks, 55, 147–158.

    Article  Google Scholar 

  21. Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communication and Mobile Computing: Special Issue on Mobile Ad Hoc Networking— Research, Trends and Applications, 2(5), 483–502.

    Article  Google Scholar 

  22. Bai, F., Sadagopan, N. & Helmy, A. (2003). Important: A framework to systematically analyze the impact of mobility on performance of routing protocols for ad hoc networks. In Proceedings of IEEE information communications conference, San Francisco.

  23. Tamijetchelvy, R. & Sivaradje, G. (2013). An optimal vertical handover for heterogeneous networks based on IEEE 802.21 MIH standards. In Fifth international IEEE conference on advanced computing (ICoAC). Chennai: Anna University.

  24. IEEE std. 802.21a. (2012). Part 21: Media independent handover services, amendment 1: Security extensions to media independent handover services and protocol. Washington, DC: IEEE Computer Society.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamiljetchelvy Ramachandran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramachandran, T., Sivaradje, G. Dynamic inter-domain MDS approach with secure seamless handover based on IEEE 802.21 MIH. Wireless Netw 22, 1851–1867 (2016). https://doi.org/10.1007/s11276-015-1072-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1072-3

Keywords

Navigation