Skip to main content

Advertisement

Log in

Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

With rapid technology progress and cost reduction, clean hydrogen from water electrolysis driven by renewable powers becomes a potential feedstock for CO2 fixation by hydrogen-oxidizing bacteria. Cupriavidus necator (formally Ralstonia eutropha), a representative member of the lithoautotrophic prokaryotes, is a promising producer of polyhydroxyalkanoates and single cell proteins. This paper reviews the fundamental properties of the hydrogen-oxidizing bacterium, the metabolic activities under limitation of individual gases and nutrients, and the value-added products from CO2, including the products with large potential markets. Gas fermentation and bioreactor safety are discussed for achieving high cell density and high productivity of desired products under chemolithotrophic conditions. The review also updates the recent research activities in metabolic engineering of C. necator to produce novel metabolites from CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alagesan S, Minton NP, Malys N (2018) 13C-assisted metabolic flux analysis to investigate heterotrophic and mixotrophic metabolism in Cupriavidus necator H16. Metabolomics 14:9–19

    Article  PubMed  CAS  Google Scholar 

  • Aragno M, Schlegel HG (1981) The hydrogen-oxidizing bacteria. In: Starr NP et al (ed) The prokaryotes. Springer, New York, pp 865–893

    Chapter  Google Scholar 

  • Ariffin H, Nishida H, Shirai Y et al (2010) Highly selective transformation of poly[R-3-hydroxybutyric acid] into trans-crotonic acid by catalytic thermal degradation. Polym Degrad Stab 95:1375–1381

    Article  CAS  Google Scholar 

  • Badger MR, Bek EJ (2008) Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acqusition by the CBB cycle. J Exp Bot 59:1525–1541

    Article  PubMed  CAS  Google Scholar 

  • Bae S, Kwak K, Kim S et al (2001) Isolation and characterization of CO2-fixing hydrogen-oxidizing marine bacteria. J Biosci Bioeng 91(5):442–448

    Article  PubMed  CAS  Google Scholar 

  • Berg IA (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77:1925–1936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boon N, Defoirdt T, De Windt W et al (2010) Hydroxybutyrate and poly-hydroxybutyrate as components of animal feed or feed additives. US Patent 2010/0093860 A1

  • Bowien B, Kusian B (2002) Genetics and control of CO(2) assimilation in the chemoautotroph Ralstonia eutropha. Arch Microbiol 178:85–93

    Article  PubMed  CAS  Google Scholar 

  • Brigham CJ, Budde CF, Holder JW et al (2010) Elucidation of β-oxidation pathways in Ralstonia eutropha H16 by examination of global gene expression. J Bacteriol 192:5454–5464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bugnicourt E, Cinelli P, Lazzeri A et al (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808

    Article  CAS  Google Scholar 

  • Burgdorf T, Lenz O, Buhrke T et al (2005) [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J Mol Microbiol Biotechnol 10:181–196

    Article  PubMed  CAS  Google Scholar 

  • Calloway DH, Kumar AM (1969) Protein quality of the bacterium Hydrogenomonas eutropha. Appl Microbiol 17:176–178

    PubMed  PubMed Central  CAS  Google Scholar 

  • Conrad R (1996) Microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640

    PubMed  PubMed Central  CAS  Google Scholar 

  • Crépin L, Lombard E, Guillouet SE (2016) Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production. Metab Eng 37:92–101

    Article  PubMed  CAS  Google Scholar 

  • Defoirdt T, Boon N, Sorgeloos P et al (2009) Short chain fatty acids and poly-beta-hydroxyalkanoates: (new) biocontrol agents for a sustainable animal production. Biotechnol Adv 27:680–685

    Article  PubMed  CAS  Google Scholar 

  • Florentino LA, Jaramillo PMD, Silva KB et al (2012) Physiological and symbiotic diversity of Cupriavidus necator strains isolated from nodules of Leguminosae species. Sci Agric 69(4):247–258

    Article  Google Scholar 

  • Gai CS, Lu J, Brigham CJ et al (2014) Insights into bacterial CO2 metabolism revealed by the characterization of four carbonic anhydrases in Ralstonia eutropha H16. AMB Express 4:2–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Gonzalez L, Mozumder MSI, Dubreuil M et al (2014) Sustainable autotrophic production of polyhydroxybutyrate (PHB) from CO2 using a two-stage cultivation system. Catal Today 257(2):237–245

    Google Scholar 

  • Garcia-Ochoa F, Gomez E, Santos V et al (2010) Oxygen uptake rate in microbial processes: an overview. Biochem Eng J 49:289–307

    Article  CAS  Google Scholar 

  • Ghysels S, Mozumder MSI, De Wever H et al (2018) Targeted poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic production from carbon dioxide. Bioresour Technol 249:858–868

    Article  PubMed  CAS  Google Scholar 

  • Grousseau E, Lu J, Gorret N et al (2014) Isopropanol production with engineered Cupriavidus necator as bioproduction platform. Appl Microbiol Biotechnol 98:4277–4290

    Article  PubMed  CAS  Google Scholar 

  • Gruber S, Schwab H, Heidinger P (2017) CbbR and RegA regulate cbb operon transcription in Ralstonia eutropha H16. J Biotechnol 257:78–86

    Article  PubMed  CAS  Google Scholar 

  • Grzeszik C, Jeffke T, Schäferjohann J et al (2000) Phosphoenolpyruvate is a signal metabolite in transcriptional control of the cbb CO2 fixation operons in Ralstonia eutropha. J Mol Microbiol Biotechnol 2:311–320

    PubMed  CAS  Google Scholar 

  • Huber R, Eder W (2006) Aquificales. In: Dworkin M et al (ed) The prokaryotes: a handbook on the biology of bacteria, vol 7, 3rd edn. Springer, New York, pp 925–928

    Chapter  Google Scholar 

  • Hunt AJ, Sin EHK, Marriott R et al (2010) Generation, capture, and utilization of industrial carbon dioxide. Chem Sus Chem 3:306–332

    Article  CAS  Google Scholar 

  • Jugder B-E, Lebhar H, Aguey-Zinsou K-F et al (2016) Production and purification of a soluble hydrogenase from Ralstonia eutropha H16 for potential hydrogen fuel cell applications. MethodsX 3:242–250

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang S, Yu J (2015a) Reaction routes in catalytic reforming of poly(3-hydroxybutyrate) into renewable hydrogen carbon oil. RSC Adv 5:30005–30013

    Article  CAS  Google Scholar 

  • Kang S, Yu J (2015b) A gasoline-grade biofuel formed from renewable polyhydroxybutyrate on solid phosphoric acid. Fuel 160:282–290

    Article  CAS  Google Scholar 

  • Kang S, Yu J (2015c) Hydrophobic organic compounds from hydrothermal liquefaction of bacterial biomass. Biomass Bioenergy 74:92–95

    Article  CAS  Google Scholar 

  • Kunasundari B, Murugaiyah V, Kaur G et al (2013) Revisiting the single cell protein application of Cupriavidus necator H16 and recovering bioplastic granules simultaneously. PLoS ONE 8(10):e78528. https://doi.org/10.1371/journal.pone.0078528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kusian B, Sültemeyer D, Bowien B (2002) Carbonic anhydrase is essential for growth of Ralstonia eutropha at ambient CO2 concentrations. J Bacteriol 184:5018–5026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laeger T, Metges CC, Kuhla B (2010) Role of β-hydroxybutyric acid in the central regulation of energy balance. Appetite 54:450–455

    Article  PubMed  CAS  Google Scholar 

  • Laycock B, Halley P, Pratt S et al (2013) The chemomechanical properties of microbial polyhydroxyalkanoate. Prog Polym Sci 38:536–583

    Article  CAS  Google Scholar 

  • Lee S-E, Li QX, Yu J (2006) Proteomic examination of Ralstonia eutropha in cellular responses to formic acid. Proteomics 6(15):4259–4268

    Article  PubMed  CAS  Google Scholar 

  • Li H, Opgenorth PH, Wernick DG et al (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335:1596–1596

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Yu J (2017a) Comparison analysis on the energy efficiencies and biomass yields in microbial CO2 fixation. Process Biochem 62:151–160

    Article  CAS  Google Scholar 

  • Lu Y, Yu J (2017b) Gas mass transfer with microbial CO2 fixation and poly(3-hydroxybutyrate) synthesis in a packed bed bioreactor. Biochem Eng J 122:13–21

    Article  CAS  Google Scholar 

  • Luef KP, Stelzer F, Wiesbrock F (2015) Poly(hydroxy alkanoate)s in medical applications. Chem Biochem Eng Q 29:287–297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marc J, Grousseau E, Lombard E et al (2017) Over expression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production. Metabolic Eng 42:74–84

    Article  CAS  Google Scholar 

  • Mertens R, Liese A (2004) Biotechnological applications of hydrogenases. Curr Opin Biotechnol 15:343–348

    Article  PubMed  CAS  Google Scholar 

  • Müller J, MacEachran D, Burd H et al (2013) Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones. Appl Environ Microbiol 79(14):4433–4439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nowotny J, Bak T, Chu D et al (2014) Sustainable practices: solar hydrogen fuel and education program on sustainable energy systems. Int J Hydrog Energy 39:4151–4157

    Article  CAS  Google Scholar 

  • Obruca S, Sedlacek P, Mravec F et al (2016) Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly(3-hydroxybutyrate) accumulating cells. Appl Microbiol Biotechnol 100:1365–1376

    Article  PubMed  CAS  Google Scholar 

  • Park I, Jho EH, Nam K (2014) Optimization of carbon dioxide and valeric acid utilization for polyhydroxyalkanoates synthesis by Cupriavidus necator. J Polym Environ 22:244–251

    Article  CAS  Google Scholar 

  • Peplinski K, Ehrenreich A, Döring C et al (2010) Genome-wide transcriptome analyses of the Knallgas bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism. Microbiology 156:2136–2152

    Article  PubMed  CAS  Google Scholar 

  • Pohlmann A, Fricke WF, Reinecke F et al (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262

    Article  PubMed  Google Scholar 

  • Przybylski D, Rohwerder T, Dilßner C et al (2015) Exploiting mixtures of H2, CO2, and O2 for improved production of methacrylate precursor 2-hydroxyisobutyric acid by engineered Cupriavidus necator strains. Appl Microbiol Biotechnol 99:2131–2145

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen M, Abdellaoui S, Minteer SD (2016) Enzymatic biofuel cells: 30 years of critical advancements. Biosens Bioelectron 76:91–102

    Article  PubMed  CAS  Google Scholar 

  • Schlegel HG, Gottschalk G, Von Bartha R (1961) Formation and utilization of poly-[beta]-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature 191:463–465

    Article  PubMed  CAS  Google Scholar 

  • Schröder V, Emonts B, Janβen H et al (2004) Explosion limits of hydrogen/oxygen mixtures at initial pressures up to 200 bar. Chem Eng Technol 27:847–851

    Article  CAS  Google Scholar 

  • Schwartz E et al (2009) A proteomic view of the facultatively chemolithoautotrophic lifestyle of Ralstonia eutropha H16. Proteomics 9(22):5132–5142

    Article  PubMed  CAS  Google Scholar 

  • Spear JR, Walker JJ, McCollom TM et al (2005) Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Natl Acad Sci 102(7):2555–2560

    Article  PubMed  CAS  Google Scholar 

  • Takeshita T, Ishizaki A (1996) Influence of hydrogen limitation on gaseous substrate utilization in autotrophic culture of Alcaligenes eutrophus ATCC 17697T. J Ferment Bioeng 81:83–86

    Article  CAS  Google Scholar 

  • Tanaka K, Ishizaki A, Kanamaru T et al (1995) Production of poly(D-3-hydroxybutyrate) from CO2, H2, and O2 by high cell density autotrophic cultivation of Alcaligenes eutrophus. Biotechnol Bioeng 45:268–275

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Miyawaki K, Yamaguchi A et al (2011) Cell growth and P(3HB) accumulation from CO2 of a carbon monoxide-tolerant hydrogen-oxidizing bacterium, Ideonella sp. O-1. Appl Microbiol Biotechnol 92:1161–1169

    Article  PubMed  CAS  Google Scholar 

  • Tiemeyer A, Link H, Weuster-Botz D (2007) Kinetic studies on autohydrogenotrophic growth of Ralstonia eutropha with nitrate as terminal electron acceptor. Appl Microbiol Biotechnol 76:75–81

    Article  PubMed  CAS  Google Scholar 

  • Torella CJ, Gagliardi JS, Chen DK et al (2015) Efficient solar-to-fuels production from a hybrid microbial/water-splitting catalyst system. Proc Natl Acad Sci USA 112:2337–2342

    Article  PubMed  CAS  Google Scholar 

  • Valappil S, Misra SK, Boccaccini AR et al (2006) Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev Med Devices 3(6):853–868

    Article  PubMed  CAS  Google Scholar 

  • Vandamme P, Coeyne T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289

    Article  PubMed  Google Scholar 

  • Volova TG, Kiselev EG, Shishatskaya EI et al (2013a) Cell growth and accumulation of polyhydroxyalkanoates from CO2 and H2 of a hydrogen-oxidizing bacterium, Cupriavidus eutrophus B-10646. Bioresour Technol 146:215–222

    Article  PubMed  CAS  Google Scholar 

  • Volova TG, Zhila NO, Kalacheva GS et al (2013b) Effects of intracellular poly(3-hydroxybutyrate) reserves on physiological biochemical properties and growth of Ralstonia eutropha. Res Microbiol 164:164–171

    Article  PubMed  CAS  Google Scholar 

  • Yoon K-S, Fukuda K, Fujisawa K et al (2011) Purification and characterization of a highly thermostable, oxygen-resistant, respiratory [NiFe]-hydrogenase from a marine, aerobic hydrogen-oxidizing bacterium Hydrogenovibrio marinus. Int J Hydrog Energy 36:7081–7088

    Article  CAS  Google Scholar 

  • Yu J (2014) Bio-based products from solar energy and carbon dioxide. Trends Biotechnol 32(1):5–10

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Plackett D, Chen LXL (2005) Kinetics and mechanism of the monomeric products from abiotic hydrolysis of poly[(R)-3-hydroxybutyrate] under acidic and alkaline conditions. Polym Degrad Stab 89:289–299

    Article  CAS  Google Scholar 

  • Yu J, Dow A, Pingali S (2013) The energy efficiency of carbon dioxide fixation by a hydrogen-oxidizing bacterium. Int J Hydrog Energy 38:8683–8690

    Article  CAS  Google Scholar 

  • Zhila N, Kalacheva G, Volova T (2015) Fatty acid composition and polyhydroxyalkanoates production by Cupriavidus eutrophus B-10646 cells grown on different carbon sources. Process Biochem 50:69–78

    Article  CAS  Google Scholar 

  • Ziogou C, Ipsakis D, Stergiopoulos F et al (2012) Infrastructure, automation and model-based operation strategy in a stand-alone hydrolytic solar-hydrogen production unit. Int J Hydrog Energy 37:16591–16603

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J. Fixation of carbon dioxide by a hydrogen-oxidizing bacterium for value-added products. World J Microbiol Biotechnol 34, 89 (2018). https://doi.org/10.1007/s11274-018-2473-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2473-0

Keywords

Navigation