Skip to main content

Aquificales

  • Reference work entry
The Prokaryotes

Introduction

Members of the order Aquificales represent a very deep phylogenetic branch within the 16S rRNA tree of the domain Bacteria. Within the order, members of the genus Aquifex have an upper temperature border of growth at 95°C and represent the bacteria with the highest growth temperatures known so far. Aquificales representatives are widespread and cosmopolitan, and they thrive mainly in volcanically or geothermally heated environments. Owing to their chemolithoautotrophic way of life, they are primary producers of bacterial biomass within high temperature ecosystems. In their energy-yielding reactions, they preferentially perform the “Knallgas” reaction, the oxidation of hydrogen and reduction of oxygen.

Phylogeny

By 16S rRNA gene sequence comparisons, it was shown that the Aquificales represent one of the deepest and earliest branching groups within the phylogenetic tree (Burggraf et al., 1992; Huber et al., 1992b; Fig. 1) along with the separate phylogenetic branch of the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Acca, M., M. Bocchetta, E. Ceccarelli, R. Creti, K. O. Stetter, and P. Cammarano. 1994 Updating mass and composition of archaeal and bacterial ribosomes: Archaeal-like features of ribosomes from the deep-branching bacterium Aquifex pyrophilus Syst. Appl. Microbiol. 16 629–637

    Article  CAS  Google Scholar 

  • Alfredsson, G. A., A. Ingason, and J. K. Kristjansson. 1986 Growth of thermophilic obligately autotrophic hydrogen-oxidizing bacteria on thiosulfate Lett. Appl. Microbiol. 2 21–23

    Article  Google Scholar 

  • Andera, L., K. Mikulik, P. Branny, and A. Puscheva. 1991 DNA-dependent RNA polymerase from an extremely thermophilic hydrogen-oxidizing bacterium Calderobacterium hydrogenophilum Biochem. Biophys. Res. Commun. 175 949–954

    Article  PubMed  CAS  Google Scholar 

  • Andera, L., K. Mikulik, and N. D. Savelyeva. 1993 Characterization of a reverse gyrase from the extremely thermophilic hydrogen-oxidizing eubacterium Calderobacterium hydrogenophilum FEMS Microbiol. Lett. 110 107–112

    Article  CAS  Google Scholar 

  • Aragno, M. 1992a Aerobic, chemolithoautotrophic, thermophilic bacteria In: J. K. Kristjansson (Ed.) Thermophilic Bacteria CRC Press Boca Raton FL 77–103

    Google Scholar 

  • Aragno, M. 1992b Thermophilic, aerobic, hydrogenoxidizing (Knallgas) bacteria In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer (Eds.) [{http://www.prokaryotes.com}The Prokaryotes] (2nd ed.) Springer-Verlag New York NY 3917–3933

    Google Scholar 

  • Aravind, L., R. L. Tatusov, Y. I. Wolf, D. R. Walker, and E. V. Koonin. 1998 Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles TIG 14 442–444

    Article  PubMed  CAS  Google Scholar 

  • Balch, W. E., and R. S. Wolfe. 1976 New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere Appl. Environ. Microbiol. 32 781–791

    PubMed  CAS  Google Scholar 

  • Baldauf, S. L., J. D. Palmer, and W. F. Doolittle. 1996 The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny Proc. Natl. Acad. Sci. USA 93 7749–7754

    Article  PubMed  CAS  Google Scholar 

  • Beck, P., and R. Huber. 1997 Detection of cell viability in cultures of hyperthermophiles FEMS Microbiol. Lett. 147 11–14

    Article  Google Scholar 

  • Beffa, T., M. Blanc, and M. Aragno. 1996 Obligately and facultatively autotrophic, sulfur-and hydrogen-oxidizing thermophilic bacteria isolated from hot composts Arch. Microbiol. 165 34–40

    Article  CAS  Google Scholar 

  • Beh, M., G. Strauss, R. Huber, K. O. Stetter, and G. Fuchs. 1993 Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus Arch. Microbiol. 160 306–311

    Article  CAS  Google Scholar 

  • Behammer, W., Z. Shao, W. Mages, R. Rachel, K. O. Stetter, and R. Schmitt. 1995 Flagellar structure and hyperthermophily: Analysis of a single flagellin gene and its product in Aquifex pyrophilus J. Bacteriol. 177 6630–6637

    PubMed  CAS  Google Scholar 

  • Bera, A. K., S. Chen, J. L. Smith, and H. Zalkin. 2000 Temperature-dependent function of the glutamine phosphoribosylpyrophosphate amidotransferase ammonia channel and coupling with glycinamide ribonucleotide synthetase in a hyperthermophile J. Bacteriol. 182 3734–3739

    Article  PubMed  CAS  Google Scholar 

  • Bocchetta, M., E. Ceccarelli, R. Creti, A. M. Sanangelantoni, O. Tiboni, and P. Cammarano. 1995 Arrangement and nucleotide sequence of the gene (fus) encoding elongation factor G (EF-G) from the hyperthermophilic bacterium Aquifex pyrophilus: Phylogenetic depth of hyperthermophilic bacteria inferred from analysis of the EF-G/fus sequences J. Molec. Evol. 41 803–812

    Article  PubMed  CAS  Google Scholar 

  • Bocchetta, M., S. Gribaldo, A. Sanangelantoni, and P. Cammarano. 2000 Phylogenetic depth of the bacterial genera Aquifex and Thermotoga inferred from analysis of ribosomal protein, elongation factor and RNA polymerase subunit sequences J. Molec. Evol. 50 366–380

    PubMed  CAS  Google Scholar 

  • Bonjour, F., and M. Aragno. 1986 Growth of thermophilic, obligatorily chemolithoautotrophic hydrogen-oxidizing bacteria related to Hydrogenobacter with thiosulfate and elemental sulfur as electron and energy source FEMS Microbiol. Lett. 35 11–15

    Article  CAS  Google Scholar 

  • Brock, T. D. 1967 Life at high temperatures Science 158 1012–1019

    Article  PubMed  CAS  Google Scholar 

  • Brock, T. D. 1978 Thermophilic microorganisms and life at high temperatures Springer-Verlag New York NY

    Book  Google Scholar 

  • Brock, T. D. 1998 Early days in Yellowstone microbiology ASM News 64 137–140

    Google Scholar 

  • Brown, J. R., and W. F. Doolittle. 1995 Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications Proc. Natl. Acad. Sci. USA 92 2441–2445

    Article  PubMed  CAS  Google Scholar 

  • Burggraf, S., G. J. Olsen, K. O. Stetter, and C. R. Woese. 1992 A phylogenetic analysis of Aquifex pyrophilus Syst. Appl. Microbiol. 15 352–356

    Article  PubMed  CAS  Google Scholar 

  • Chatelet, C., J. Gaillard, Y. Petillot, M. Louwagie, and J. Meyer. 1999 A [2Fe-2S] protein from the hyperthermophilic bacterium Aquifex aeolicus Biochem. Biophys. Res. Commun. 261 885–889

    Article  PubMed  CAS  Google Scholar 

  • Choi, I. G., S. S. Kim, J.-R. Ryu, Y. S. Han, W. G. Bang, S. H. Kim, and Y. G. Yu. 1997 Random sequence analysis of genomic DNA of a hyperthermophile: Aquifex pyrophilus Extremophiles 1 125–134

    Article  PubMed  CAS  Google Scholar 

  • Choi, I. G., W. G. Bang, S. H. Kim, and Y. G. Yu. 1999 Extremely thermostable serine-type protease from Aquifex pyrophilus J. Biol. Chem. 274 881–888

    Article  PubMed  CAS  Google Scholar 

  • Deckert, G., P. V. Warren, T. Gaasterland, W. G. Young, A. L. Lenox, D. E. Graham, R. Overbeek, M. A. Snead, M. Keller, M. Aujay, R. Huber, R. A. Feldman, J. M. Short, G. J. Olsen, and R. V. Swanson. 1998 The complete genome of the hyperthermophilic bacterium Aquifex aeolicus Nature 392 353–358

    Article  PubMed  CAS  Google Scholar 

  • Eder, W., and R. Huber. 2002 New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov Extremophiles 6(4) 309–318

    Article  Google Scholar 

  • Graber, J. R., J. Kirshtein, M. Speck, and A.-L. Reysenbach. 2001 Community structure along a thermal gradient in a stream near Obsidian Pool, Yellowstone National Park In: A.-L. Reysenbach, M. Voytek, and R. Mancinelli (Eds.) Thermophiles: Biodiversity, Ecology, and Evolution Kluwer Academic/Plenum Publishers New York NY 81–91

    Chapter  Google Scholar 

  • Huber, R., and K. O. Stetter. 1992a The order Thermotogales In: A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (Eds.) [{http://www.prokaryotes.com}The Prokaryotes] Springer-Verlag New York NY 3809–3815

    Google Scholar 

  • Huber, R., T. Wilharm, D. Huber, A. Trincone, S. Burggraf, H. König, R. Rachel, I. Rockinger, H. Fricke, and K. O. Stetter. 1992b Aquifex pyrophilus gen.nov., sp.nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria Syst. Appl. Microbiol. 15 340–351

    Article  Google Scholar 

  • Huber, R., S. Burggraf, T. Mayer, S. M. Barns, P. Rossnagel, and K. O. Stetter. 1995 Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis Nature 376 57–58

    Article  PubMed  CAS  Google Scholar 

  • Huber, R., W. Eder, S. Heldwein, G. Wanner, H. Huber, R. Rachel, and K. O. Stetter. 1998 Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park Appl. Environ. Microbiol. 64 3576–3583

    PubMed  CAS  Google Scholar 

  • Huber, R. 1999a Die Laserpinzette als Basis für Einzelzellkultivierungen BIOspektrum 5 289–291

    Google Scholar 

  • Huber, R., and K. O. Stetter. 1999b Thermotogales [{http://www.els.net}Encyclopedia of Life Sciences] Nature Publishing Group London England

    Google Scholar 

  • Huber, R., and K. O. Stetter. 2000a Genus Aquifex In: G. M. Garrity, D. R. Boone, and R. W. Castenholz (Eds.) [{http://www.cme.msu.edu/bergeys} Bergey’s Manual of Systematic Bacteriology] Springer-Verlag New York NY 1 360–362

    Google Scholar 

  • Huber, R., W. Eder, and K. O. Stetter. 2000b Genus Thermocrinis In: G. M. Garrity, D. R. Boone, and R. W. Castenholz (Eds.) [{http://www.cme.msu.edu/bergeys} Bergey’s Manual of Systematic Bacteriology] Springer-Verlag New York NY 1 364–366

    Google Scholar 

  • Huber, R., H. Huber, and K. O. Stetter. 2000c Towards the ecology of hyperthermophiles: Biotopes, new isolation strategies and novel metabolic properties FEMS Microbiol. Rev. 24 615–623

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz, P., C. Pitulle, K. L. Hershberger, and N. R. Pace. 1998 Novel division level bacterial diversity in a Yellowstone hot spring J. Bacteriol. 180 366–376

    PubMed  CAS  Google Scholar 

  • Ishii, M., Y. Igarashi, and T. Kodama. 1987 Purification and characterization of ATP: Citrate Lyase from Hydrogenobacter thermophilus TK-6 J. Bacteriol. 171 1788–1792

    Google Scholar 

  • Ishii, M., Y. Igarashi, and T. Kodama. 1989 Colony formation of Hydrogenobacter thermophilus on a plate solidified with Gelrite Agric. Biol. Chem. 51 3139–3141

    Article  Google Scholar 

  • Ishii, M., T. Kawasumi, Y. Igarashi, and A.-L. Reysenbach. 2001 Genus Hydrogenobacter In: G. M. Garrity, D. R. Boone, and R. W. Castenholz (Eds.) [{http://www.cme.msu.edu/bergeys}Bergey’s Manual of Systematic Bacteriology] Springer-Verlag New York NY 1 363–364

    Google Scholar 

  • Jahnke, L. L., W. Eder, R. Huber, J. M. Hope, K.-U. Hinrichs, J. M. Hayes, D. J. Des Marais, S. L. Cady, and R. E. Summons. 2001 Composition of hydrothermal vent microbial communities as revealed by analyses of signature lipids, stable carbon isotopes and Aquificales cultures Appl. Environ. Microbiol. 67 5179–5189

    Article  PubMed  CAS  Google Scholar 

  • Kang, K. K., G. T. Veeder, P. J. Mirrasoul, T. Kaneko, and I. W. Cottrell. 1982 Agar-like polysaccharide produced by a Pseudomonas species: Production and basic properties Appl. Environ. Microbiol. 43 1086–1091

    PubMed  CAS  Google Scholar 

  • Kawasumi, T., Y. Igarashi, T. Kodama, and Y. Minoda. 1984 Hydrogenobacter thermophilus gen. nov., sp. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium Int. J. Syst. Bacteriol. 34 5–10

    Article  CAS  Google Scholar 

  • Kim, S. S., I. G. Choi, S. H. Kim, and Y. G. Yu. 1999 Molecular cloning, expression, and characterization of a thermostable glutamate racemase from a hyperther-mophilic bacterium, Aquifex pyrophilus Extremophiles 3 175–183

    Article  PubMed  Google Scholar 

  • Klenk, H.-P., P. Palm, and W. Zillig. 1994 DNA-dependent RNA polymerases as phylogenetic marker molecules Syst. Appl. Microbiol. 16 638–647

    Article  CAS  Google Scholar 

  • Klenk, H.-P., T.-D. Meier, P. Durovic, V. Schwass, F. Lottspeich, P. P. Dennis, and W. Zillig. 1999 RNA polymerase of Aquifex pyrophilus: Implications for the evolution of the bacterial rpoBC operon and extremely thermophilic bacteria J. Molec. Evol. 48 528–541

    Article  PubMed  CAS  Google Scholar 

  • Kristjansson, K. J., A. Ingason, and G. A. Alfredsson. 1985 Isolation of thermophilic obligately autotrophic hydrogen-oxidizing bacteria, similar to Hydrogenobacter thermophilus, from Icelandic hot springs Arch. Microbiol. 140 321–325

    Article  CAS  Google Scholar 

  • Kryukov, V. R., N. D. Savel’eva, and M. A. Pusheva. 1983 Calderobacterium hydrogenophilum nov. gen., sp. nov., an extremely thermophilic hydrogen bacterium and its hydrogenase activity Microbiology 52 611–618

    Google Scholar 

  • Kyrpides, N. C. and G. J. Olsen. 1999 Archaeal and bacterial hyperthermophiles: Horizontal gene exchange or common ancestry? Trends Genet. 15 298–299

    Article  PubMed  CAS  Google Scholar 

  • Lim, J. H., Y. G. Yu, I. G. Choi, J.-R. Ryu, B.-Y. Ahn, S. H. Kim, and Y. S. Han. 1997 Cloning and expression of superoxide dismutase from Aquifex pyrophilus, a hyperthermophilic bacterium FEBS Lett. 406 142–146

    Article  PubMed  CAS  Google Scholar 

  • Lim, J. H., J. Choi, S. J. Han, S. H. Kim, H. Z. Hwang, D. K. Jin, B. Y. Ahn, and Y. S. Han. 2001 Molecular cloning and characterization of thermostable DNA ligase from Aquifex pyrophilus, a hyperthermophilic bacterium Extremophiles 5 161–168

    Article  PubMed  CAS  Google Scholar 

  • Logsdon, J. M. and D. M. Faguy. 1999 Thermotoga heats up lateral gene transfer Curr. Biol. 9 R747–R751

    Article  PubMed  CAS  Google Scholar 

  • Ludvik, J., O. Benada, and K. Mikulik. 1994 Ultrastructure of an extreme thermophilic hydrogen-oxidizing bacterium Calderobacterium hydrogenophilum Arch. Microbiol. 162 267–271

    Article  CAS  Google Scholar 

  • Malik, K. A. 1999 Preservation of some extremely thermophilic chemolithoautotrophic bacteria by deep-freezing and liquid-drying methods J. Microb. Meth. 35 177–182

    Article  CAS  Google Scholar 

  • Manelius, A., O. Holst, G. O. Hreggvidsson, J. K. Kristjansson, N. Raven, and R. Sharp. 1997 Continous cultivation of Hydrogenobacter thermophilus at low partial pressures of H2 Biotechnol.Techniques 11 177–181

    Article  CAS  Google Scholar 

  • Marler, G. D. 1973 Inventory of Thermal Features of the Firehole River Geyser Basins and Other Selected Areas of Yellowstone National Park US Dept. of Commerce, National Technical Information Service Springfield IL PB–221289

    Google Scholar 

  • Marteinsson, V. T., S. Hauksdottir, C. F. V. Hobel, H. Kristmannsdottir, G. O. Hreggvidsson, and J. K. Kristjansson. 2001a Phylogenetic diversity analysis of subterranean hot springs in Iceland Appl. Environ. Microbiol. 67 4242–4248

    Article  PubMed  CAS  Google Scholar 

  • Marteinsson, V. T., J. K. Kristjansson, H. Kristmannsdottir, M. Dahlkvist, K. Saemundsson, M. Hannigton, S. K. Petursdottir, A. Geptner, and P. Stoffers. 2001b Discovery and description of giant submarine smectite cones on the seafloor in Eyjafjordur, northern Iceland, and a novel thermal habitat Appl. Environ. Microbiol. 67 827–833

    Article  PubMed  CAS  Google Scholar 

  • Nelson, K. E., R. A. Clayton, S. R. Gill, M. L. Gwinn, R. J. Dodson, D. H. Haft, E. K. Hickey, J. D. Peterson, W. C. Nelson, K. A. Ketchum, L. McDonald, T. R. Utterback, J. A. Malek, K. D. Linher, M. M. Garrett, A. M. Stewart, M. D. Cotton, M. S. Pratt, C. A. Phillips, D. Richardson, J. Heidelberg, G. G. Sutton, R. D. Fleischmann, J. A. Eisen, O. White, S. L. Salzberg, H. O. Smith, J. C. Venter, and C. M. Fraser. 1999 Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima Nature 399 323–329

    Article  PubMed  CAS  Google Scholar 

  • Nesbo, C. L., S. L’Haridon, K. O. Stetter, and W. F. Doolittle. 2001 Phylogenetic analyses of two “archaeal” genes in Thermotoga maritima reveal multiple transfers between Archaea and Bacteria Molec. Biol. Evol. 18 362–375

    Article  PubMed  CAS  Google Scholar 

  • Nishihara, H., Y. Igarashi, and T. Kodama. 1990 A new isolate of Hydrogenobacter, an obligately chemolithoautotrophic, thermophilic, halophilic and aerobic hydrogen-oxidizing bacterium from seaside saline hot spring Arch. Microbiol. 153 294–298

    Article  CAS  Google Scholar 

  • Nübel, T., C. Klughammer, R. Huber, G. Hauska, and M. Schütz. 2000 Sulfide:quinone oxidoreductase in membranes of the hyperthermophilic bacterium Aquifex aeolicus (VF5) Arch. Microbiol. 173 233–244

    Article  PubMed  Google Scholar 

  • Pennisi, E. 1998 Genome data shake the tree of life Science 280 672–674

    Article  PubMed  CAS  Google Scholar 

  • Pennisi, E. 1999 Is it time to uproot the tree of life? Science 284 1305–1307

    Article  PubMed  CAS  Google Scholar 

  • Pitulle, C., Y. Yinqing, M. Marchiani, E. R. B. Moore, J. L. Siefert, M. Aragno, P. Jurtshuk, and G. E. Fox. 1994 Phylogenetic position of the genus Hydrogenobacter Int. J. Syst. Bacteriol. 44 620–626

    Article  PubMed  CAS  Google Scholar 

  • Plötz, B. M., B. Lindner, K. O. Stetter, and O. Holst. 2000 Characterization of a novel lipid A containing D-galacturonic acid that replaces phosphate residues J. Biol. Chem. 275 11222–11228

    Article  PubMed  Google Scholar 

  • Reysenbach, A.-L., G. S. Whickham, and N. R. Pace. 1994 Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park Appl. Environ. Microbiol. 60 2113–2119

    PubMed  CAS  Google Scholar 

  • Reysenbach, A.-L., A. B. Banta, D. R. Boone, S. C. Cary, and G. W. Luther. 2000a Microbial essentials at hydrothermal vents Nature 404 835

    Article  PubMed  CAS  Google Scholar 

  • Reysenbach, A.-L., M. Ehringer, and K. Hershberger. 2000b Microbial diversity at 83°C in Calcite Springs, Yellowstone National Park: Another environment where the Aquificales and “Korarchaeota” coexist Extremophiles 4 61–67

    PubMed  CAS  Google Scholar 

  • Reysenbach, A.-L., K. Longnecker, and J. Kirshtein. 2000c Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic ridge hydrothermal vent Appl. Environ. Microbiol. 66 3798–3806

    Article  PubMed  CAS  Google Scholar 

  • Reysenbach, A.-L. 2001 Class I: Aquificae class. nov In: G. M. Garrity, D. R. Boone, and R. W. Castenholz (Eds.) [{http://www.cme.msu.edu/bergeys}Bergey’s Manual of Systematic Bacteriology] Springer-Verlag New York NY 1 359

    Google Scholar 

  • Schütz, M., M. Brugna, E. Lebrun, F. Baymann, R. Huber, K. O. Stetter, G. Hauska, R. Toci, D. Lemesle-Meunier, P. Tron, C. Schmidt, and W. Nitschke. 2000 Early evolution of cytochrome bc complexes J. Molec. Biol. 300 663–675

    Article  PubMed  Google Scholar 

  • Shao, Z., W. Mages, and R. Schmitt. 1994 A physical map of the hyperthermophilic bacterium Aquifex pyrophilus chromosome J. Bacteriol. 176 6776–6780

    PubMed  CAS  Google Scholar 

  • Shiba, H., T. Kawasumi, Y. Igarashi, T. Kodama, and Y. Minoda. 1985 The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic, aerobic hydrogen-oxidzing bacterium, Hydrogenobacter thermophilus Arch. Microbiol. 141 198–203

    Article  CAS  Google Scholar 

  • Shima, S. and K. I. Suzuki. 1993 Hydrogenobacter acidophilus sp. nov., a thermoacidophilic, aerobic, hydrogen-oxidizing bacterium requiring elemental sulfur for growth Int. J. Syst. Bacteriol. 43 703–708

    Article  Google Scholar 

  • Shima, S., M. Yanagi, and H. Saiki. 1994 The phylogenetic position of Hydrogenobacter acidophilus based on 16S rRNA sequence analysis FEMS Microbiol. Lett. 119 119–122

    Article  PubMed  CAS  Google Scholar 

  • Skirnisdottir, S., G. O. Hreggvidsson, S. Hjörleifsdottir, V. T. Marteinsson, S. K. Petursdottir, O. Holst, and J. K. Kristjansson. 2000 Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats Appl. Environ. Microbiol. 66 2835–2841

    Article  PubMed  CAS  Google Scholar 

  • Skirnisdottir, S., G. O. Hreggvidsson, O. Holst, and J. K. Kristjansson. 2001 A new ecological adaptation to high sulfide by a Hydrogenobacter sp. growing on sulfur compounds but not on hydrogen Microbiol. Res. 156 41–47

    Article  CAS  Google Scholar 

  • Snel, B., P. Bork, and M. A. Huynen. 1999 Genome phylogeny based on gene content Nature Genet. 21 108–110

    Article  PubMed  CAS  Google Scholar 

  • Stöhr, R., A. Waberski, H. Völker, B. J. Tindall, and M. Thomm. 2001 Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum “Hydrogenobacter/Aquifex” Int. J. Syst. Evol. Microbiol. 51 1853–1862

    Article  PubMed  Google Scholar 

  • Studholme, D. J. and M. Buck. 2000a The alternative sigma factor σ28 of the extreme thermophile Aquifex aeolicus restores motility to an Escherichia coli fliA mutant FEMS Microbiol. Lett. 191 103–107

    PubMed  CAS  Google Scholar 

  • Studholme, D. J., S. R. Wigneshwereraraj, M.-T. Gallegos, and M. Buck. 2000b Functionality of purified σN54) and a NifA-like protein from the hyperthermophile Aquifex aeolicus J. Bacteriol. 182 1616–1623

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, M., Z. J. Cui, M. Ishii, and Y. Igarashi. 2001 Nitrate respiratory metabolism in an obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6 Arch. Microbiol. 175 75–78

    Article  PubMed  CAS  Google Scholar 

  • Swanson, R. V. 2001 Genome of Aquifex aeolicus In: M. W. W. Adams and R. M. Kelly (Eds.) Methods in Enzymology Academic Press San Diego CA 158–169

    Google Scholar 

  • Takacs, C. D., M. Ehringer, R. Favre, M. Cermola, G. Eggertsson, A. Palsdottir, and A.-L. Reysenbach. 2001 Phylogenetic characterization of the blue filamentous bacterial community from an Icelandic geothermal spring FEMS Microbiol. Ecol. 35 123–128

    Article  PubMed  CAS  Google Scholar 

  • Takai, K., T. Komatsu, and K. Horikoshi. 2001 Hydrogenobacter subterraneus sp. nov., an extremely thermophilic, heterotrophic bacterium unable to grow on hydrogen gas, from deep subsurface geothermal water Int. J. Syst. Evol. Microbiol. 51 1425–1435

    PubMed  CAS  Google Scholar 

  • Wetmur, J. G., D. M. Wong, B. Ortiz, J. Tong, F. Reichert, and D. H. Gelfand. 1994 Cloning, sequencing, and expression of RecA proteins from three distantly related thermophilic eubacteria J. Biol. Chem. 269 25928–25935

    PubMed  CAS  Google Scholar 

  • Yamamoto, H., A. Hiraishi, K. Kato, H. X. Chiura, Y. Maki, and A. Shimizu. 1998 Phylogenetic evidence for the existence of novel thermophilic bacteria in hot spring sulfur-turf microbial mats in Japan Appl. Environ. Microbiol. 64 1680–1687

    PubMed  CAS  Google Scholar 

  • Yoo, S. J., J. Meyer, and E. Münck. 1999 Mössbauer evidence for a diferrous [2Fe-2S] cluster in a ferredoxin from Aquifex aeolicus J. Am. Chem. Soc. 121 10450–10451

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Huber, R., Eder, W. (2006). Aquificales. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30747-8_39

Download citation

Publish with us

Policies and ethics