Skip to main content
Log in

Sulfur oxidation by Achromobacter xylosoxidans strain wsp05 reveals ecological widening over which thiotrophs are distributed

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Achromobacter xylosoxidans is a versatile bacterium known for its ability to degrade aromatic compounds. However, its ability to oxidize sulfur compounds for electron and energy source is not reported much. In the present work, the Gram-negative bacterium Achromobacter xylosoxidans strain wsp05 isolated from a waste stabilization ponds (WSPs) system was studied for its ability to oxidize reduced sulfur compounds. The strain was able to oxidize thiosulfate and sodium sulfite. To observe the effect of physicochemical parameters on the rate of sulfur oxidation, strain wsp05 was grown in thiosulfate (20 mM) containing minimal salt medium at varied pH, temperature and ammonium and phosphate ions concentration. Maximum thiosulfate oxidation was observed at 30 °C with initial pH of 7–7.2. The strain was characterized using universal 16S rRNA gene primers revealing high similarity (> 99%) with Achromobacter xylosoxidans NBRC 15126T belonging to β-proteobacteria. In the present study, we investigated the sulfur oxidation properties of the Achromobacter xylosoxidans strain wsp05, which revealed an ecological and phylogenetic widening over which the thiotrophs are distributed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andrea G, Stephan S (2003) Isolation and molecular characterization of thiosulfate-oxidizing bacteria from an Italian rice field. Syst Appl Microbiol 26(3):445–452. doi:10.1078/072320203322497482

    Article  Google Scholar 

  • Brock CS, Leavitt PR, Schindler DE, Johnson SP, Morre JW (2006) Spatial variability of stable isotopes and fossil pigments in surface sediments of Alaskan coastal lakes: constraints on quantitative estimates of past Salmon abundance. Limnol Oceanogr 51:1637–1647. doi:10.4319/lo.2006.51.4.1637

    Article  CAS  Google Scholar 

  • Brüser T, Lens PNL, Trüper HG (2000) The biological sulfur cycle. In: Lens PNL (ed) Environmental technologies to treat sulfur pollution. IWA Publishing, London, pp 47–86

    Google Scholar 

  • Cappuccino JG, Sherman N (2005) Microbiology: a laboratory manual. Pearson Education, New York

    Google Scholar 

  • Caspersen MB, Bennett K, Christensen HEM (2000) Expression and characterization of recombinant Rhodocyclus tenuis high potential iron-sulfur protein. Protein Exp Purif 19:259–264

    Article  CAS  Google Scholar 

  • Das SK, Mishra AK, Tindall BJ, Rainey FA, Stackebrandt E (1996) Oxidation of thiosulfate by a new bacterium Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 46:981–987

    Article  CAS  Google Scholar 

  • Davidson MS, Summers AO (1983) Wide-host-range plasmids function in the genus Thiobacillus. Appl Environ Microbiol 46:565–572

    CAS  Google Scholar 

  • Deb C, Stackebrandt E, Pradella S, Saha A, Roy P (2004) Phylogenetically diverse new sulfur chemolithotrophs of alpha-proteobacteria isolated from Indian soils. Curr Microbiol 48:452–458. doi:10.1007/s00284-003-4250-y

    Article  CAS  Google Scholar 

  • Deveryshetty J, Phale PS (2010) Biodegradation of phenanthrene by Alcaligenes sp. strain PPH: partial purification and characterization of 1-hydroxy-2-naphthoic acid hydroxylase. FEMS Microbiol Lett 311:93–101. doi:10.1111/j.1574-6968.2010.02079.x

    Article  CAS  Google Scholar 

  • Eccleston M, Kelly DP (1978) Oxidation kinetics and chemostat growth kinetics of Thiobacillus ferrooxidans on tetrathionate and thiosulfate. J Bacteriol 134:718–727

    CAS  Google Scholar 

  • Essam T, Amin MA, El Tayeb O, Mattiasson B, Guieysse B (2010) Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1. J Hazard Mater 173:783–788. doi:10.1016/j.jhazmat.2009.09.006

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution Int J org Evolution 39:783–791

    Article  Google Scholar 

  • Fuchs T, Huber H, Burggraf S, Stetter KO (1996) 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov. Syst Appl Microbiol 19(96):56–60

    Article  CAS  Google Scholar 

  • Ghosh W, Dam B (2009) Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea FEMS. Microbiol Rev 33(6):999–1043. doi:10.1111/j.1574-6976.2009.00187

    CAS  Google Scholar 

  • Ghosh W, Bagchi A, Mandal S, Dam B, Roy P (2005) Tetrathiobacter kashmirensis gen. nov., sp. nov., a novel mesophilic, neutrophilic, tetrathionate-oxidizing, facultatively chemolithotrophic β-proteobacterium isolated from soil from a temperate orchard in Jammu and Kashmir, India. Int J Syst Evol Microbiol 55:1779–1787. doi:10.1099/ijs.0.63595-0

    Article  CAS  Google Scholar 

  • Ghosh W, Alam M, Roy C, Pyne P, George A et al (2013) Genome implosion elicits host-confinement in Alcaligenaceae: evidence from the comparative genomics of Tetrathiobacter kashmirensis, a pathogen in the making. PLoS ONE 8(5):e64856. doi:10.1371/journal.pone.0064856

    Article  CAS  Google Scholar 

  • Ikenaga M, Muraoka Y, Toyota K, Kimura M (2002) Community structure of the microbiota associated with nodal roots of rice plants along with the growth stages: estimation by PCR-RFLP analysis. Biol Fert Soils 36:397–404

    Article  CAS  Google Scholar 

  • Ingledew WJ (1982) Thiobacilus ferrooxidans: the bioenergetics of acidiphilic chemolithotrophs. Biochim Biophys Acta 683:89–117

    Article  CAS  Google Scholar 

  • Jadhav K, Jadhav I, Billore S (2012) Carbon source variability and metal tolerance in newly isolated strain Thiobacillus WSP07. J Microbiol Biotechnol Res 2(1):99–107

    CAS  Google Scholar 

  • Jaime HC, Francois S, Peer B (2016) Reconstruction, analysis and visualization of phylogenomic data. Mol Biol Evol. doi:10.1093/molbev/msw046

    Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132

    Chapter  Google Scholar 

  • Kappler U (2010) Bacterial sulfite-oxidizing enzymes. Biochim Biophys Acta 1807(1):1–10. doi:10.1016/j.bbabio.2010.09.004

    Google Scholar 

  • Kelly DP, Harrison AP (1989) Genus Thiobacillusbeijerinck. In: Staley JT, Bryant MP, Pfennig N, Holt GJ (eds) Bergey’s manual of systematic bacteriology, vol 3. The Williams and Wilkins Co, Baltimore, pp 193–217

    Google Scholar 

  • Kelly DP, Chambers LA, Trudinger PA (1969) Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate. Anal Chem 41:898–890

    Article  CAS  Google Scholar 

  • Kelly DP, Shergill JK, Lu WP, Wood AP (1997) Oxidative metabolism of inorganic sulphur compounds by bacteria. Antonie Van Leeuwenhoek 71:95–107

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Lane DJ, Stahl DA, Olsen GJ, Heller DJ, Pace NR (1985) Phylogenetic analysis of the genera Thiobacillus and Thiomicrospira by 5S rRNA sequences. J Bacteriol 163:75–81

    CAS  Google Scholar 

  • Mukhopadhyaya PN, Chirajyoti D, Chandrajit L, Pradosh R (2000) A soxA gene, encoding a diheme cytochrome c and a sox locus, essential for sulfur oxidation in a new sulfur lithotrophic bacterium. J Bacteriol 182(15):4278–4287

    Article  CAS  Google Scholar 

  • Okabe T, Sugita K, Satoh H (2005) Succession of internal sulfur cycles and sulfur-oxidizing bacterial communities in microaerophilic wastewater biofilms. Appl Environ Microbiol 71(2):2520–2529. doi:10.1128/AEM.71.5.2520-2529.2005

    Article  CAS  Google Scholar 

  • Quentmeier A, Hellwig P, Bardischewsky F, Grelle G, Kraft R, Friedrich CG (2003) Sulfur oxidation in Paracoccus pantotrophus: interaction of the sulfur-binding protein Sox YZ with the dimanganese Sox B protein. Biochem Biophys Res Commun 312(4):1011–1018. doi:10.1016/j.bbrc.2003.11.021

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) Theneighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Silver M, Dinardo O (1981) Factors affecting oxidation of thiosalts by Thiobacilli. Appl Environ Microbiol 41(6):1301–1309

    CAS  Google Scholar 

  • Singh NS, Singh DK (2011) Biodegradation of endosulfan and endosulfansulfate by Achromobacter xylosoxidans strain C8B in broth medium. Biodegradation 22:845. doi:10.1007/s10532-010-9442-0

    Article  CAS  Google Scholar 

  • Sorbo B (1953) Crystallinerhodanese I. Purification and physicochemical examination. Acta Chem Scand 7:1129–1136

    Article  CAS  Google Scholar 

  • SPSS (2008) Statistics for windows, version 17.0. SPSS Inc, Chicago

    Google Scholar 

  • Strnad H, Ridl H, Paces J, Kolar M, Vlcek C, Paces V (2011) Complete genome sequence of the haloaromatic acid-degrading bacterium Achromobacter xylosoxidans A8. J Bacteriol 193(3):791–792. doi:10.1128/JB.01299-10

    Article  CAS  Google Scholar 

  • Takeuchi TL, Suzuki I (1994) Effect of pH on silfite oxidation by Thiobacillus thiooxidans cells with sulfurous acid or sulfur dioxode as a possible substrat. J Bacteriol 176(3):913–916

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  Google Scholar 

  • Truper HG, Pfennig N (1966) Sulfur metabolism in Thiorhodaceae. III. Storage and turnover of thiosulfate sulfur in Thiocapsa floridana and Chromatium sp. Antonie von Leeuwenhoek. J Microbiol Serol 32:261–276

    CAS  Google Scholar 

  • Wächtershäuser G (2000) Origin of life: life as we don’t know it. Science 289(5483):1307–1308. doi:10.1126/science.289.5483.1307

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their gratitude to the Public Health Department (PHE) and Town and Country Planning Department, Ujjain, M.P. for their technical assistance during the sampling procedure and for providing relevant literature of WSP system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapilesh Jadhav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, K., Jadhav, I. Sulfur oxidation by Achromobacter xylosoxidans strain wsp05 reveals ecological widening over which thiotrophs are distributed. World J Microbiol Biotechnol 33, 192 (2017). https://doi.org/10.1007/s11274-017-2359-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2359-6

Keywords

Navigation