Skip to main content

Advertisement

Log in

Native isolate of Trichoderma: a biocontrol agent with unique stress tolerance properties

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Species of Trichoderma are widely recognized for their biocontrol abilities, but seldom studied collectively, for their plant growth promotion, abiotic stress tolerance and bioremediation properties. Our study is a concentrated effort to establish the potential of native isolate Trichoderma harzianum KSNM (T103) to tolerate biotic (root pathogens) and abiotic stresses [high salt (100–1000 mM); heavy metal (chromium, nickel and zinc: 1–10 mM); pesticides: malathion (100–600 ppm), carbofuran (100–600 ppb)], along with its ability to support plant growth. In vitro growth promotion assays with T103 treated Vigna radiata, Vigna mungo and Hordeum vulgare confirmed ‘non-species specific’ growth promotion effects of T103. At lower metal concentration, T103 treatment was found to completely negate the impact of metal stress [60 % increase in radicle length (RL) with no significant decrease in %germination (%G)]. Even at 10 mM metal, T103 inoculation gave 80 % increase in %G and >50 % increase in RL. In vitro experiments confirmed high metal reduction capacity (47 %-Cr, 35 %-Ni and 42 %-Zn) of T103 at concentrations as high as 4 mM. At maximum residual concentrations of malathion (440 ppm) and carbofuran (100 ppb) reported in agricultural soils, T103 maintained 80 and 100 % survivability, respectively. T103 treatment has improved %G and RL in all three hosts challenged with pesticide. Isolate T103 was found to effectively suppress growth of three major root pathogens: Macrophomina phaseolina (65.83 %) followed by Sclerotium rolfsii (19.33 %) and Fusarium oxysporum (19.18 %). In the light of these observations, native T. harzianum (T103) seems to be a competent biocontrol agent for tropical agricultural soils contaminated with residual pesticides and heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdullah MT, Ali NY, Suleman P (2008) Biological control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus amyloliquefaciens. Crop Prot 27:1354–1359

    Article  Google Scholar 

  • Agarwal T, Malhotra A, Trivedi PC, Biyan M (2011) Biocontrol potential of Gliocladium virens against fungal pathogens isolated from chickpea, lentil and black gram seeds. J Agric Technol 7:1833–1839

    Google Scholar 

  • Aggarwal TC, Narula N, Gupta KG (1986) Effect of some carbamate pesticide on nodulation, plant yield and nitrogen fixation by Pisum sativum and Vigna sinensis in the presence of their respective rhizobia. Plant Soil 94:125–132

    Article  CAS  Google Scholar 

  • Akbari GA, Arab SM, Alikhani HA, Allahdadi I, Arzanesh MH (2007) Isolation and selection of indigenous Azospirillum spp. and the IAA of superior strains effects on wheat roots. World J Agric Sci 3:523–529

    Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    Article  Google Scholar 

  • Ali M, Gupta S (2012) Carrying capacity of Indian agriculture: pulse crops. Curr Sci 102:874–881

    Google Scholar 

  • Altomare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65:2926–2933

    CAS  Google Scholar 

  • Amin F, Razdan VK, Mohiddin FA, Bhat KA, Banday S (2010) Potential of Trichoderma species as biocontrol agents of soil borne fungal propagules. J Phytol 2:38–41

    Google Scholar 

  • Anisa SK, Ashwini S, Girish K (2013) Isolation and screening of Aspergillus spp. for pectinolytic activity. Electron J Biol 9:37–41

    Google Scholar 

  • Anke H, Kinn J, Brgquist KE, Sterner O (1991) Production of siderophore by strains of Trichoderma: isolation and characterization of the new lipophilic coprogen derivative, palmitoyl coprogen. Biol Metals 4:176–180

    Article  CAS  Google Scholar 

  • Babu AG, Shim J, Bang KS, Shea PJ, Oh BT (2014) Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manag 132:129–134

    Article  CAS  Google Scholar 

  • Barbosa MAG, Rehn KG, Menezes M, Mariano RLR (2001) Antagonism of Trichoderma species on Cladosporium herbarum and their enzymatic characterization. Braz J Microbiol 32:98–104

    Article  CAS  Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    Google Scholar 

  • Bhushan C, Bhardwaj A, Misra SS (2013) State of pesticide regulations in India. Centre for Science and Environment, New Delhi

    Google Scholar 

  • Cao L, Jiang M, Zeng Z, Du A, Tan H, Liu Y (2008) Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L.) Coss. var. foliosa Bailey) in Cd, Ni contaminated soils. Chemosphere 71:1769–1773

    Article  CAS  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Article  CAS  Google Scholar 

  • Dennis C, Webster J (1971a) Antagonistic properties of species-groups of Trichoderma: I. Production of non-volatile antibiotics. Trans Br Mycol Soc 57:25–39

    Article  CAS  Google Scholar 

  • Dennis C, Webster J (1971b) Antagonistic properties of species-groups of Trichoderma: II. Production of volatile antibiotics. Trans Br Mycol Soc 57:41–48

    Article  CAS  Google Scholar 

  • Dennis C, Webster J (1971c) Antagonistic properties of species-groups of Trichoderma: III. Hyphal interaction. Trans Br Mycol Soc 57:363–369

    Article  Google Scholar 

  • Doni F, Isahak A, Zain CRCM, Yusoff WMW (2014) Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. AMB Express 4:1–7

    Article  CAS  Google Scholar 

  • Doyle JJ (1991) DNA protocols for plants. In: Hewitt G, Johnson AWB, Young JPW (eds) Molecular techniques in taxonomy NATO ASI series H: cell biology, vol 57. Springer, Heidelberg, pp 283–293

    Chapter  Google Scholar 

  • Ekpete OA, Festus C (2013) Heavy metal distribution in soil along Iwofe Rumuolumeniroad. Exp 8:450–455

    Google Scholar 

  • Hardy DH, Myers J, Stokes C (2008) Heavy metals in North Carolina soils: occurrence and significance. N.C. Department of Agriculture and Consumer Services. http://www.ncagr.gov/agronomi/pdffiles/hmetals.pdf. Accessed 26 Aug 2015

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  Google Scholar 

  • Harris WF, Sweet TR (1952) Volumetric determination of nickel in steel. Anal Chem 24:1062–1063

    Article  CAS  Google Scholar 

  • Heydari S, Rezvani-Moghadam P, Arab M (2008) Hydrogen cyanide production ability by Pseudomonas fluorescence bacteria and their inhibition potential on weed germination. Paper presented at Competition for Resources in a changing world: New drive for rural development, Tropentag, Hohenheim. http://www.tropentag.de/2008/abstracts/full/676.pdf. Accessed 26 Aug 2015

  • Howell CR (2003) Mechanisms employed by species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:1–11

    Article  Google Scholar 

  • Khan MY, Asghar HN, Jamshaid MU, Akhtar MJ, Zahir ZA (2013) Effect of microbial inoculation on wheat growth and phyto-stabilization of chromium contaminated soil. Pak J Bot 45:27–34

    CAS  Google Scholar 

  • Khare A, Singh BK, Upadhyay RS (2010) Biological control of Pythium aphanidermatum causing damping-off of mustard by mutants of Trichoderma viride 1433. J Agric Technol 6:231–243

    Google Scholar 

  • Kolli SC, Nagamani A, Rahel RY (2012) Growth response of Trichoderma isolates against varying pH levels. Int J Environ Biol 2:180–182

    Google Scholar 

  • Kredics L, Antal Z, Manczinger L, Szekeres A, Kevei F, Nagy F (2003) Trichoderma strains with biocontrol potential. Food Technol Biotechnol 41:37–42

    Google Scholar 

  • Kubicek CP, Harman GE (1998) Trichoderma and Gliocladium: basic biology, taxonomy and genetics, vol 1. Taylor & Francis, London

    Google Scholar 

  • Küçük Ç, Kivanç M (2003) Isolation of Trichoderma spp. and determination of their antifungal, biochemical and physiological features. Turk J Biol 27:247–253

    Google Scholar 

  • Kumari B, Madan VK, Kathpal TS (2008) Status of insecticide contamination of soil and water in Haryana, India. Environ Monit Assess 136:239–244

    Article  CAS  Google Scholar 

  • Kumari TGV, Basu K, Nithya TG, Varma A, Kharkwal AC (2014) Isolation and screening of alkali tolerant Trichoderma spp. as biocontrol agent for alkaline agricultural soil. Int J of Pharm Pharm Sci 6:512–516

    Google Scholar 

  • Lopez-Bucio J, Pelagio-Flores R, Herrera-Estrella A (2015) Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci Hortic. doi:10.1016/j.scienta.2015.08.043

    Google Scholar 

  • Matsumura F, Boush GM (1966) Malathion degradation by Trichoderma viride and a Pseudomonas species. Science 153:1278–1280

    Article  CAS  Google Scholar 

  • Meldau DG, Long HH, Baldwin IT (2012) A native plant growth promoting bacterium, Bacillus sp. B 55, rescues growth performance of an ethylene-insensitive plant genotype in nature. Front Plant Sci 3:1–13. doi:10.3389/fpls.2012.00112

    Article  Google Scholar 

  • Mishra N, Sundari SK (2015) Native PGPM consortium: a beneficial solution to support plant growth in the presence of phytopathogens and residual organophosphate pesticides. J Bioprocess Biotech 5:202. doi:10.4172/2155-9821.1000202

    Google Scholar 

  • Misra AK, Dave N (2013) Impact of soil salinity and erosion and its overall impact on India. Int J Innov Res Eng Sci 2:12–17

    Google Scholar 

  • Montville TJ (1983) Dual-substrate plate diffusion assay for proteases. Appl Environ Microbiol 45:200–204

    CAS  Google Scholar 

  • Paul D, Choudhary B, Gupta T, Jose MT (2014) Spatial distribution and the extent of heavy metal and hexavalent chromium pollution in agricultural soils from Jajmau, India. Environ Earth Sci 73:3565–3577

    Article  Google Scholar 

  • Pointing SB (1999) Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers 2:17–33

    Google Scholar 

  • Raghuvanshi R, Singh S, Bisen PS (2007) Iron mediated regulation of growth and siderophore production in a diazotrophic cyanobacterium Anabaena cylindrica. Ind J Exp Biol 45:563–567

    CAS  Google Scholar 

  • Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Ind J Exp Biol 41:935–944

    CAS  Google Scholar 

  • Rawat L, Singh Y, Shukla N, Kumar J (2013) Salinity tolerant Trichoderma harzianum reinforces NaCl tolerance and reduces population dynamics of Fusarium oxysporum f. sp. ciceri in chickpea (Cicer arietinum L.) under salt stress conditions. Arch Phytopathol Plant Prot 46:1442–1467

    Article  CAS  Google Scholar 

  • Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield, growth and stagnation. Nat Commun 3:1293–2296

    Article  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechol Adv 17:319–339

    Article  Google Scholar 

  • Saksirirat W, Chareerak P, Bunyatrachata W (2009) Induced systemic resistance of biocontrol fungus, Trichoderma spp. against bacterial and gray leaf spot in tomatoes. Asian J Food Agro-Ind 2:S99–S104

    Google Scholar 

  • Sarkar S, Satheshkumar A, Jayanthi R, Premkumar R (2010) Biosorption of nickel by live biomass of Trichoderma harzianum. Res J Agric Sci 1:69–74

    Google Scholar 

  • Sarkar S, Satheshkumar A, Premkumar R (2013) Hexavalent chromium (Cr(VI)) removal by live mycelium of a Trichoderma harzianum strain. Mol Soil Biol 4:1–6

    Google Scholar 

  • Sayyed RZ, Badgujar MD, Sonawane HM, Mhaske MM, Chincholkar SB (2005) Production of microbial iron chelators (siderophores) by fluorescent pseudomonads. Indian J Biotechnol 4:484–490

    CAS  Google Scholar 

  • Senesi N, Loffredo E, Padovano G (1990) Effects of humic acid-herbicide interactions on growth of Pisum sativum in nutrient solution. Plant Soil 127:41–47

    Article  CAS  Google Scholar 

  • Shaw RJ, Hughes KK, Thorburn PJ, Dowling AJ (1987) Principles of landscape, soil and water salinity—processes and management options, Part A. In: Proceedings of the Brisbane Regional Salinity Workshop in landscape, soil and water salinity, Brisbane, Queensland Department of Primary Industries Publication QC87003

  • Siddiquee S, Aishah SN, Azad SA, Shafawati SN, Naher L (2013) Tolerance and biosorption capacity of Zn2+, Pb2+, Ni3+ and Cu2+ by filamentous fungi (Trichoderma harzianum, T. aureoviride and T. virens). Adv Biosci Biotechnol 4:570–583

    Article  CAS  Google Scholar 

  • Singh S, Kumar M (2006) Heavy metal load of soil, water and vegetables in peri-urban Delhi. Environ Monit Assess 120:79–91. doi:10.1007/s10661-005-9050-3

    Article  CAS  Google Scholar 

  • Singh BK, Upadhyay RS (2009) Management of southern stem blight of soybean by PCNB resistant mutants of Trichoderma harzianum 4572 incited by Sclerotium rolfsii. J Agric Technol 5:85–98

    Google Scholar 

  • Singh V, Singh PN, Yadav RL, Awasthi SK, Joshi BB, Singh RK, Lal RJ, Duttamajumder SK (2010) Increasing the efficacy of Trichoderma harzianum for nutrient uptake and control of red rot in sugarcane. J Hortic For 2:66–71

    Google Scholar 

  • Singh G, Nema R, Khare S, Singh D, Jain P, Pradhan A, Gupta A (2012) Tolerance and bioremediation capacity of Trichoderma viride with special reference to heavy metals (Cr, Cd). Indo Am J Pharm Res 2:1007–1014

    Google Scholar 

  • Singh A, Shahid M, Srivastava M, Pandey S, Sharma A, Kumar V (2014) Optimal physical parameters for growth of Trichoderma species at varying pH, temperature and agitation. Virol Mycol 3:127. doi:10.4172/2161-0517.1000127

    CAS  Google Scholar 

  • Skoog DA, West DM, Holler FJ, Crouch SR (2000) Analytical chemistry: an introduction, 7th edn. Saunders College Publishing, Fort Worth Texas

    Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654

    Google Scholar 

  • Soden DM, O’Callaghan J, Dobson ADW (2002) Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. Microbiology 148:4003–4014

    Article  CAS  Google Scholar 

  • Soesanto L, Utami DS, Rahayuniati RF (2011) Morphological characteristics of four Trichoderma isolates and two endophytic Fusarium isolates. Can J Sci Ind Res 2:294–306

    Google Scholar 

  • Sofo A, Scopa A, Manfra M, De Nisco M, Tenore G, Troisi J, Di Fiori R, Novellino E (2011) Trichoderma harzianum strain T-22 induces changes in phytohormone levels in cherry rootstocks (Prunus cerasus × P. canescens). Plant Growth Regul 65:421–425

    Article  CAS  Google Scholar 

  • Sofo A, Tataranni G, Xiloyannis C, Dichio B, Scopa A (2012) Direct effects of Trichoderma harzianum strain T-22 on micropropagated shoots of GiSeLa6® (Prunus cerasus × Prunus canescens) rootstock. Environ Exp Bot 76:33–38

    Article  CAS  Google Scholar 

  • Srivastava MP, Tewari R, Sharma N (2013) Effect of different cultural variables on siderophores produced by Trichoderma spp. Int J Adv Res 1:1–6

    Google Scholar 

  • Sundari SK (2014) Impact of biotic, abiotic stressors: biotechnologies for alleviating plant stress. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses: alleviation of soil stress by PGPR and mycorrhizal fungi. Springer, New York, pp 87–120

    Chapter  Google Scholar 

  • Swaminathan R, Singh K, Nepalia V (2012) Insect pests of green gram Vigna radiata (L.) Wilczek and their management. In: Aflakpui G (ed) Agricultural Science. InTech. http://www.intechopen.com/books/agricultural-science/insect-pests-of-green-gram-vignaradiata-l-wilczek-and-their-management. Accessed 26 Aug 2015

  • Tanveer A, Rehman A, Javaid MM, Abbas RN, Sibastin M, Ahmad AUH, Ibin-I-Zamir MS, Chaudhary KM, Aziz A (2010) Allelopathic potential of Euphorbia helioscopia L. against wheat (Triticum aestivum L.), chickpea (Cicer arietinum L.) and lentil (Lens culinaris Medic.). Turk J Agric For 34:75–81

    Google Scholar 

  • Tripathi P, Singh PC, Mishra A, Chaun PS, Dwivedi S, Bais RT, Tripathi RD (2013) Trichoderma: a potential bioremediator for environmental cleanup. Clean Techn Environ Policy. doi:10.1007/s10098-012-0553-7

    Google Scholar 

  • Tripathi P, Singh PC, Mishra A, Tripathi RD, Nautiyal CS (2015) Trichoderma inoculation augments grain amino acids and mineral nutrients by modulating arsenic speciation and accumulation in chickpea (Cicer arietinum L.). Ecotoxicol Environ Saf 117:72–80

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (US EPA) (1998) Toxicological review of hexavalent chromium. National Center for Environmental Assessment, Office of Research and Development, Washington, DC. CAS No. 18540-29-9. http://www.epa.gov/iris/toxreviews/0144tr.pdf. Accessed 26 Aug 2015

  • Veerapagu M, Narayanan AS, Ponmurugan K, Jeya KR (2013) Screening selection identification production and optimization of bacterial lipase from oil spilled soil. Asian J Pharm Clin Res 6:62–67

    Google Scholar 

  • Viterbo A, Ramot O, Chernin L, Chet I (2002) Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie Van Leeuwenhoek 81:549–556

    Article  CAS  Google Scholar 

  • Wahid OAA, Mehana TA (2000) Impact of phosphate-solubilizing fungi on the yield and phosphorus-uptake by wheat and faba bean plants. Microbiol Res 155:221–227

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  Google Scholar 

  • Williams J, Clarkson JM, Mills PR, Cooper RM (2003) A selective medium for quantitative re-isolation of Trichoderma harzianum from Agaricus bisporus compost. Appl Environ Microbiol 69:4190–4191

    Article  CAS  Google Scholar 

  • Windham MT, Elad Y, Baker R (1986) A mechanism for increased plant growth induced by Trichoderma spp. Phytopathology 76:518–521

    Article  Google Scholar 

  • Woitke M, Junge H, Schnitzler WH (2004) Bacillus subtilis as growth promoter in hydroponically grown tomatoes under saline conditions. Acta Hortic 659:363–369

    Article  Google Scholar 

  • World demand for pesticides to reach $52 billion in 2014 (2010) Article published in SeedQuest. The Fredonia Group, Inc., 767 Beta Drive, Cleveland, OH 44143-2326. https://www.seedquest.com/market.php?type=market&id_article=9968&id_region=&id_category=42&id_crop=. Accessed 26 Aug 2015

  • Yadav SL, Mishra AK, Dongre PN, Singh R (2011) Assessment of fungi toxicity of phylloplane fungi against Alternaria brassicae causing leaf spot of mustard. J Agric Technol 7:1823–1831

    Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  CAS  Google Scholar 

  • Yedidia I, Srivastava AK, Kapulnik Y, Chet I (2001) Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235–242

    Article  CAS  Google Scholar 

  • Zaidi A, Mohammad O, Ahmad E, Khan MS (2011) Importance of free-living fungi in heavy metal remediation. In: Khan MS, Zaidi A, Goel R, Musarrat J (eds) Biomanagement of metal-contaminated soils. Springer, Dordrecht, pp 479–494

    Chapter  Google Scholar 

  • Žėkaitė G, Jaška V, Poška K, Andrulytė M, Grigiškis S (2013) Microorganisms producing biosurfactant selection and characterization of new discovered bioemulsifier that will be used to create ecological heating production technology. Environ Technol Resources 1:222–226

    Google Scholar 

Download references

Acknowledgments

This work was supported by Department of Biotechnology (DBT), Govt. of India for the research under grant no BT/PR11470/AGR/21/276/2008; dated 14/09/2010. Authors thankfully acknowledge CRIDA for providing us with fungal plant pathogen cultures. The authors thankfully acknowledge the support of Jaypee Institute of Information Technology (JIIT), NOIDA, for providing all necessary support to conduct this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Krishna Sundari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, N., Khan, S.S. & Sundari, S.K. Native isolate of Trichoderma: a biocontrol agent with unique stress tolerance properties. World J Microbiol Biotechnol 32, 130 (2016). https://doi.org/10.1007/s11274-016-2086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2086-4

Keywords

Navigation