Skip to main content
Log in

Development of a powder formulation based on Bacillus cereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Maize is an economically important crop in northern Mexico. Different fungi cause ear and root rot in maize, including Fusarium verticillioides (Sacc.) Nirenberg. Crop management of this pathogen with chemical fungicides has been difficult. By contrast, the recent use of novel biocontrol strategies, such as seed bacterization with Bacillus cereus sensu lato strain B25, has been effective in field trials. These approaches are not without their problems, since insufficient formulation technology, between other factors, can limit success of biocontrol agents. In response to these drawbacks, we have developed a powder formulation based on Bacillus B25 spores and evaluated some of its characteristics, including shelf life and efficacy against F. verticillioides, in vitro and in maize plants. A talc-based powder formulation containing 1 × 109 c.f.u. g−1 was obtained and evaluated for seed adherence ability, seed germination effect, shelf life and antagonism against F. verticillioides in in vitro and in planta assays. Seed adherence of viable bacterial spores ranged from 1.0 to 1.41 × 107 c.f.u. g−1. Bacteria did not display negative effects on seed germination. Spore viability for the powder formulation slowly decreased over time, and was 53 % after 360 days of storage at room temperature. This formulation was capable of controlling F. verticillioides in greenhouse assays, as well as eight other maize phytopathogenic fungi in vitro. The results suggest that a talc-based powder formulation of Bacillus B25 spores may be sufficient to produce inoculum for biocontrol of maize ear and root rots caused by F. verticillioides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad Y, Mirza MS (1988) Maize—a new host for Choanephora cucurbitarum in Pakistan. Pak J Agric Res 9:268

    Google Scholar 

  • Almaghrabi OA, Abdelmoneim T, Albishri HM, Moussa TA (2014) Enhancement of maize growth using some plant growth promoting rhizobacteria (PGPR) under laboratory conditions. Life Sci J 11:764–772

    Google Scholar 

  • Asran M, Buchenauer H (2003) Pathogenicity of Fusarium graminearum isolates on maize (Zea mays L.) cultivars and relation with deoxynivalenol and ergosterol contents. Z Pflanzenkrankh Pflanzenschutz 110:209–219

    CAS  Google Scholar 

  • Bacon CW, Yates IE, Hinton DM, Meredith F (2001) Biological control of Fusarium moniliforme in maize. Environ Health Perspect 109:325

    Article  CAS  Google Scholar 

  • Balconi C, Berardo N, Locatelli S, Lanzanova C, Torri A, Redaelli R (2014) Evaluation of ear rot (Fusarium verticillioides) resistance and fumonisin accumulation in Italian maize inbred lines. Phytopathol Mediterr 53:14–26

    CAS  Google Scholar 

  • Bardin SD, Huang H-C (2003) Efficacy of stickers for seed treatment with organic matter or microbial agents for the control of damping-off of sugar beet. Plant Pathol Bull 12:19–26

    CAS  Google Scholar 

  • Bhattacharjee R, Dey U (2014) An overview of fungal and bacterial biopesticides to control plant pathogens/diseases. Afr J Microbiol Res 8:1749–1762

    Article  Google Scholar 

  • Boyetchko S, Pedersen E, Punja Z, Reddy M (1999) Formulations of biopesticides. In: Hall FR, Menn JJ (eds) Biopesticides: use and delivery, Methods in Biotechnology, vol 5. Humana Press Inc., Totowa, pp 487–508

    Google Scholar 

  • Bressan W, Figueiredo JF (2010) Chitinolytic Bacillus spp. isolates antagonistic to Fusarium moniliforme in maize. J Plant Pathol 92(2):343–347

    Google Scholar 

  • Cavaglieri L, Orlando J, Rodriguez M, Chulze S, Etcheverry M (2005) Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Res Microbiol 156 (5):748–754

    Article  CAS  Google Scholar 

  • Chakravarty G, Kalita M (2013) Comparative evaluation of organic formulations of Pseudomonas fluorescens based biopesticides and their application in the management of bacterial wilt of brinjal (Solanum melongena L.). Afr J Biotechnol 10:7174–7182

    Google Scholar 

  • Chen Z-M et al (2010) Greater enhancement of Bacillus subtilis spore yields in submerged cultures by optimization of medium composition through statistical experimental designs. Appl Microbiol Biotechnol 85:1353–1360

    Article  CAS  Google Scholar 

  • Chung S, Lim J-H, Kim S-D (2010) Powder formulation using heat resistant endospores of two multi-functional plant growth promoting rhizobacteria Bacillus strains having phytophtora blight suppression and growth promoting functions. J Korean Soc Appl Biol Chem 53:485–492

    Article  Google Scholar 

  • Cohen E, Okon Y, Kigel J, Nur I, Henis Y (1980) Increase in dry weight and total nitrogen content in Zea mays and Setaria italica associated with nitrogen-fixing Azospirillum spp. Plant Physiol 66:746–749

    Article  CAS  Google Scholar 

  • Cordero-Ramírez JD (2013) Creación e identificación molecular de una colección de bacterias de la rizósfera de maíz para el escrutinio de antagonistas a Fusarium sp. [Creation and molecular identification of a collection of bacteria from the rhizosphere of corn for screening antagonists to Fusarium sp.]. Doctoral dissertation, Instituto Politécnico Nacional

  • Cubeta M, Hartman G, Sinclair J (1985) Interaction between Bacillus subtilis and fungi associated with soybean seeds. Plant Dis 69:506–509

    Google Scholar 

  • Dey R, Pal KK, Tilak K (2014) Plant growth promoting rhizobacteria in crop protection and challenges. In: Goyal A, Manoharachary C (eds) Future challenges in crop protection against fungal pathogens, Fungal Biology. Springer, New York, pp 31–58

    Google Scholar 

  • du Toit LJ, Kirby HW, Pedersen WL (1997) Evaluation of an aeroponics system to screen maize genotypes for resistance to Fusarium graminearum seedling blight. Plant disease 81:175–179

    Article  Google Scholar 

  • El-Hassan S, Gowen S (2006) Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. J Phytopathol 154:148–155

    Article  Google Scholar 

  • Errington J (2003) Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol 1:117–126

    Article  CAS  Google Scholar 

  • Figueroa-López AM, Cordero-Ramírez JD, Martínez-Álvarez JC, López-Meyer M, Lizárraga-Sánchez GJ, Félix-Gastélum R, Castro-Martínez C, Maldonado-Mendoza IE (2016) Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. Springer Plus. doi:10.1186/s40064-016-1780-x

  • García-Aguirre G, Martínez-Flores R (2010) Fusarium species from corn kernels recently harvested and shelled in the fields in the Ciudad Serdán Region, Puebla. Rev Mex Biodivers 81:15–20

    Google Scholar 

  • Gašić S, Tanović B (2013) Biopesticide formulations, possibility of application and future trends. Pestic Fitomed 28:97–102

    Article  Google Scholar 

  • Gerber J (2010) Yield response of Fusarium infected maize seed treated with biological control agent formulations. Master's Dissertation. University of South Africa

  • Harman GE, Petzoldt R, Comis A, Chen J (2004) Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94:147–153

    Article  Google Scholar 

  • Hefny M, Attaa S, Bayoumi T, Ammar S, Bramawy ME- (2012) Breeding maize for resistance to ear rot caused by Fusarium moniliforme. Pak J Biol Sci 15:78

    Article  CAS  Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97:8859–8873

    Article  CAS  Google Scholar 

  • Hynes RK, Boyetchko SM (2006) Research initiatives in the art and science of biopesticide formulations. Soil Biol Biochem 38:845–849

    Article  CAS  Google Scholar 

  • Kloepper J, Schroth M (1981) Development of a powder formulation of rhizobacteria for inoculation of potato seed pieces. Phytopathology 71:590–592

    Article  Google Scholar 

  • Lalloo R (2010) Development of a bioprocess for the production of an aquaculture biological agent. Doctoral dissertation, University of Stellenbosch

  • Leyva-Madrigal KY et al (2015) Fusarium species from the Fusarium fujikuroi species complex involved in mixed infections of maize in Northern Sinaloa, Mexico. J Phytopathol 163:486–497

    Article  CAS  Google Scholar 

  • Liu Y et al (2007) Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides 28:553–559

    Article  Google Scholar 

  • Liu B, Qiao H, Huang L, Buchenauer H, Han Q, Kang Z, Gong Y (2009) Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biol Control 49:277–285

    Article  Google Scholar 

  • Lizárraga-Sánchez GJ, Leyva-Madrigal KY, Sánchez-Peña P, Quiroz-Figueroa FR, Maldonado-Mendoza IE (2015) Bacillus cereus sensu lato strain B25 controls maize stalk and ear rot in Sinaloa. Mexico Field Crops Res 176:11–21

    Article  Google Scholar 

  • Monteiro SM, Clemente JJ, Henriques AO, Gomes RJ, Carrondo MJ, Cunha AE (2005) A procedure for high-yield spore production by Bacillus subtilis. Biotechnol Prog 21:1026–1031

    Article  CAS  Google Scholar 

  • Morsy EM, Abdel-Kawi K, Khalil M (2009) Efficiency of Trichoderma viride and Bacillus subtilis as biocontrol agents against Fusarium solani on tomato plants Egyptian. J Phytopathol 37:47–57

    Google Scholar 

  • Nakkeeran S, Fernando WD, Siddiqui ZA (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 257–296

    Google Scholar 

  • Nakkeeran S, Fernando WD, Siddiqui ZA (2006) Role of cytokinins in plant growth promotion by rhizosphere bacteria. In: PGPR: biocontrol and biofertilization. Springer, pp 257–296

  • Omer AM (2010) Bioformulations of Bacillus spores for using as biofertilizer. Life Sci J 7:124–131

    Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  CAS  Google Scholar 

  • Palazzini JM, Torres AM, Chulze SN (2013) Biological control of Fusarium head blight of wheat: from selection to formulation. In: Alconada Magliano TM, Chulze SN (eds) Fusarium head blight in Latin America. Springer, Dordrecht, pp 191–204

    Chapter  Google Scholar 

  • Paneerselvam A, Kumar DP, Thenmozhi R, Anupama PD, Nagasathya A, Thajuddin N (2012) Selection of potential antagonistic Bacillus and Trichoderma isolates from tomato rhizospheric soil against Fusarium oxysporum F. sp. lycoperscisi. J Microbiol Biotechnol Res 2:78–89

    Google Scholar 

  • Pereira P, Nesci A, Etcheverry MG (2009) Efficacy of bacterial seed treatments for the control of Fusarium verticillioides in maize. Biocontrol 54:103–111

    Article  Google Scholar 

  • Pereira P, Nesci A, Castillo C, Etcheverry M (2011) Field studies on the relationship between Fusarium verticillioides and maize (Zea mays L.): effect of biocontrol agents on fungal infection and toxin content of grains at harvest. Int J Agron. doi:10.1155/2011/486914

    Google Scholar 

  • Rao YK, Tsay K-J, Wu W-S, Tzeng Y-M (2007) Medium optimization of carbon and nitrogen sources for the production of spores from Bacillus amyloliquefaciens B128 using response surface methodology. Process Biochem 42:535–541

    Article  CAS  Google Scholar 

  • Reddy PP (2013) Recent advances in crop protection. Springer, Berlin

    Book  Google Scholar 

  • Reyes-Velázquez WP, Figueroa-Gómez RM, Barberis M, Reynoso MM, Rojo FG, Chulze SN, Torres AM (2011) Fusarium species (section Liseola) occurrence and natural incidence of beauvericin, fusaproliferin and fumonisins in maize hybrids harvested in Mexico. Mycotoxin Res 27:187–194

    Article  Google Scholar 

  • Romero D et al (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20:430–440

    Article  CAS  Google Scholar 

  • Saha D, Purkayastha G, Ghosh A, Isha M, Saha A (2012) Isolation and characterization of two new Bacillus subtilis strains from the rhizosphere of eggplant as potential biocontrol agents. J Plant Pathol 94:109–118

    Google Scholar 

  • Saharan B, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Saleh AA, Ahmed HU, Todd TC, Travers SE, Zeller KA, Leslie JF, Garrett KA (2010) Relatedness of Macrophomina phaseolina isolates from tallgrass prairie, maize, soybean and sorghum. Mol Ecol 19:79–91

    Article  CAS  Google Scholar 

  • Sanders M, Morelli L, Tompkins T (2003) Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr Rev Food Sci Food Saf 2:101–110

    Article  Google Scholar 

  • Schaeffer AB, Fulton MD (1933) A simplified method of staining endospores. Science 77:194

    Article  CAS  Google Scholar 

  • Schisler D, Slininger P, Behle R, Jackson M (2004) Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267–1271

    Article  CAS  Google Scholar 

  • Serratos-Hernández J-A, Islas-Gutiérrez F, Buendía-Rodríguez E, Berthaud J (2004) Gene flow scenarios with transgenic maize in Mexico. Environ Biosaf Res 3:149–157

    Article  Google Scholar 

  • Shaikh S, Sayyed R (2015) Role of plant growth-promoting rhizobacteria and their formulation in biocontrol of plant diseases. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, India, pp 337–351

    Google Scholar 

  • Sharp RE, Silk WK, Hsiao TC (1988) Growth of the maize primary root at low water potentials I. Spatial distribution of expansive growth. Plant Physiol 87:50–57

    Article  CAS  Google Scholar 

  • Snow A (2009) Unwanted transgenes re-discovered in Oaxacan maize. Mol Ecol 18:569–571

    Article  Google Scholar 

  • Ugoji E, Laing M, Hunter C (2006) An investigation of the shelf-life (storage) of Bacillus isolates on seeds. South Afr J Bot 72:28–33

    Article  Google Scholar 

  • Vidhyasekaran P, Muthamilan M (1995) Development of formulations of Pseudomonas fluorescens for control of chickpea wilt. Plant disease 79:782–786

    Article  Google Scholar 

  • Warham EJ, Sutton B, Butler L (1996) Seed testing of maize and wheat: a laboratory guide. CIMMYT, Mexico

    Google Scholar 

  • Yánez-Mendizabal V, Viñas I, Usall J, Cañamás T, Teixidó N (2012) Endospore production allows using spray-drying as a possible formulation system of the biocontrol agent Bacillus subtilis CPA-8. Biotechnol Lett 34:729–735. doi:10.1007/s10529-011-0834-y

    Article  Google Scholar 

  • Yánez-Mendizábal V, Viñas I, Usall J, Torres R, Solsona C, Abadias M, Teixidó N (2012a) Formulation development of the biocontrol agent Bacillus subtilis strain CPA-8 by spray-drying. J Appl Microbiol 112:954–965. doi:10.1111/j.1365-2672.2012.05258.x

    Article  Google Scholar 

  • Yánez-Mendizábal V et al (2012b) Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur J Plant Pathol 132:609–619

    Article  Google Scholar 

  • Zhang J, Xue A, Tambong J (2009) Evaluation of seed and soil treatments with novel Bacillus subtilis strains for control of soybean root rot caused by Fusarium oxysporum and F. graminearum. Plant Dis 93:1317–1323

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Karla Yeriana Leyva Madrigal, Marco Antonio Magallanes Tapia, Daniel Torres Rodríguez, and Dr. Miguel Ángel Apodaca Sánchez for providing phytopathogenic fungi other than F. verticillioides P03, in order to conduct the in vitro antagonistic assays. We acknowledge technical help from Karina Isabel Medellín-Bool. We thank Dr. Brandon Loveall of Improvence for English proofreading of the manuscript. The authors are grateful to the Fundación Produce Sinaloa (SIP-2012-RE/146) and the Instituto Politécnico Nacional (SIP 20121159, SIP 20131502, SIP-IPN 20144103) for supporting this research. JCMA received support from COTEBAL (IPN) to conduct this work (No. SeAca/COTEBAL/72/12) and a doctoral fellowship from CONACyT (94560).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio E. Maldonado-Mendoza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Álvarez, J.C., Castro-Martínez, C., Sánchez-Peña, P. et al. Development of a powder formulation based on Bacillus cereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants. World J Microbiol Biotechnol 32, 75 (2016). https://doi.org/10.1007/s11274-015-2000-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-015-2000-5

Keywords

Navigation