Skip to main content
Log in

Cultivable Bacteria Populations Associated with Leaves of Banana and Plantain Plants and Their Antagonistic Activity Against Mycosphaerella fijiensis

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Mycosphaerella fijiensis is the etiological agent of Black Sigatoka, a fungal disease that affects production of banana and plantain crops in tropical regions. The sizes of cultivable epiphytic and endophytic bacterial populations, aerobic endospore forming bacteria (AEFB), and antagonist bacteria against M. fijiensis isolated from three Musa spp. cultivars from Urabá (Colombia) were studied, in order to find a suitable screening strategy to isolate antagonistic bacteria. Most of the variability found in the epiphytic and endophytic bacterial community sizes among fruit trees was explained by the cultivar differences. We found population sizes ranging from 1.25 × 103 to 9.64 × 105 CFU/g of fresh leaf and found that 44 % of total cultivable bacteria belong to the AEFB group. We isolated 648 AEFB from three different cultivars and assessed their antagonistic activity against M. fijiensis using the cell-free supernatant obtained from bacterial liquid cultures in three different in vitro assays. Five percent of those bacteria showed higher percent inhibition than the positive control Bacillus subtilis UA321 has (percent inhibition = 84 ± 5) in the screening phase. Therefore, they were selected as antagonistic bacteria against the pathogen. The strains with the highest percentage of antagonism were found in older leaves for the three cultivars, given support to recommend this group of leaves for future samplings. Some of these isolated bacteria affected the mycelium and ascospores morphology of the fungus. They also presented in vitro characteristics related to a successful colonization of the phylloplane such as indolic compounds, surfactant production, and biofilm formation, which makes them possible, potential candidates as biological control agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bais HP, Fall R, Vivanco J (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  PubMed  CAS  Google Scholar 

  2. Blakeman JP, Fokkema NJ (1982) Potential for biological control of plant diseases on the phylloplane. Annu Rev Phytopathol 20:167–192

    Article  Google Scholar 

  3. Brandl MT, Lindow SE (1998) Contribution of indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Appl Environ Microbiol 64:3256–3263

    PubMed  CAS  Google Scholar 

  4. Brenth KJ, Hollomon DW (2007) Fungicide resistance in crop pathogens: how can it be managed? Fungicide Resistance Action Committee, Brussels

    Google Scholar 

  5. Bucks JD (1982) Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993

    Google Scholar 

  6. Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening of plant growth promoting rhizobacteria (PGPR) to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  7. Demoz BT, Korsten L (2006) Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens. Biol Control 37:68–74

    Article  Google Scholar 

  8. Du Pont (1982) Black and yellow Sigatoka: improved identification and management techniques. Du Pont, Coral Gables, p. 17

  9. Earl AM, Losick R, Kolter R (2008) Ecology and genomics of Bacillus subtilis. Trends Microbiol 16:269–275

    Article  PubMed  CAS  Google Scholar 

  10. Foldes TI, Banhegyi I, Herpai Z, Vargas L, Szigeti J (2000) Isolation of Bacillus strains from the rhizosphere of cereals and in vitro screening for antagonism against phytopathogenic, food-borne pathogenic and spoilage microorganisms. J Appl Microbiol 89:840–846

    Article  PubMed  CAS  Google Scholar 

  11. Food and Agriculture Organization of the United Nations (2010) FAO Statistic Division (May 17). Available at Production-Crops: http://faostat.fao.org/site/567/default.aspx#ancor (cited 20 July 2011)

  12. Frison E, Sharrock S (1999) The economic, nutritional and social importance of bananas in the World. In: Picq C, Fouré E, Frison EA (eds) Banana and food security. Proceedings of International Symposium on Bananas and Food Security, Douala, Cameroon, pp 221–35

  13. Hoss R, Helbing J, Bochow H (2000) Function of host and fungal metabolites in resistance response of banana and plantain in the Black Sigatoka disease pathosystem (Musa spp.–Mycosphaerella fijiensis). J Phytopathol 148:387–394

    Article  CAS  Google Scholar 

  14. Jacome LH, Schuh W, Stevenson RE (1991) Effect of temperature of relative humidity on germination and germ tube development of Mycosphaerella fijiensis var. difformis. Phytopathology 81:1480–1485

    Article  Google Scholar 

  15. Jacques MA, Kinkel LL, Morris CE (1995) Population sizes, immigration, and growth of epiphytic bacteria on leaves of different ages and positions of field-grown endive (Cichorium endivia var. latifolia). Appl Environ Microbiol 61:899–906

    PubMed  CAS  Google Scholar 

  16. Jacques P, Hbid C, Destain J, Razafindralambo H, Paquot M, De Pauw E, Thonart P (1999) Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett–Burman design. Appl Biochem Biotechnol 77:223–233

    Article  Google Scholar 

  17. Jager ES, Wehner FC, Korsten L (2001) Microbial ecology of the mango phylloplane. Microb Ecol 42:201–207

    PubMed  Google Scholar 

  18. Karamanoli K, Menkissoglu-Spiroudi U, Bosabalidis AM, Vokou D, Constantinidou H (2005) Bacterial colonization of the phyllosphere of nineteen plant species and antimicrobial activity of their leaf secondary metabolites against leaf associated bacteria. Chemoecology 15:59–67

    Article  Google Scholar 

  19. Kinkel LM, Wilson M, Lindow SE (2000) Plant species and plant incubation conditions influence variability in epiphytic bacterial population size. Microb Ecol 39:1–11

    Article  PubMed  Google Scholar 

  20. Lindow S, Brandl M (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  PubMed  CAS  Google Scholar 

  21. Liu Z, Stewart EL, Szabo S (1991) Phylogenetic relationships among cercospora and allied genera on banana based on rDNA sequence comparison. Phytopathology 81:1240

    Google Scholar 

  22. Marin DH, Ronald AR, Guzman M, Sutton TB (2003) Black Sigatoka: an increasing threat to banana cultivation. Plant Dis 87:208–219

    Article  Google Scholar 

  23. McInerney MJ, Javaheri M, Nagle DN (1990) Properties of the biosurfactant produced by Bacillus licheniformis JF-2. J Ind Microbiol Biotechnol 5:95–102

    CAS  Google Scholar 

  24. McSpadden-Gardener BB (2004) Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94:1252–1258

    Article  PubMed  CAS  Google Scholar 

  25. Mercier J, Lindow SE (2000) Role of leaf Surface sugars in colonization of plants by bacterial epiphytes. Appl Environ Microbiol 66:369–374

    Article  PubMed  CAS  Google Scholar 

  26. Morris CE, Monier JM, Jacques MA (1997) Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms. Appl Environ Microbiol 63:1570–1576

    PubMed  CAS  Google Scholar 

  27. O’Brien RD, Lindow SE (1989) Effect of plant species and environmental conditions on epiphytic population sizes of Pseudomonas syringae and other bacteria. Phytopathology 79:619–627

    Article  Google Scholar 

  28. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    Article  PubMed  CAS  Google Scholar 

  29. O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaber VB, Kolter R (1999) Genetic approaches to the study of biofilms. Methods Enzymol 310:91–109

    Article  PubMed  Google Scholar 

  30. Patiño LF, Bustamante E, Vásquez LE (2012) Manejo biológico en la filosfera: Modelo Mycosphaerella fijiensis Morelet en banano (Musa AAA). In: Hoyos LM (ed) 2012. Enferemedades de Plantas: control biológico. ECOE Ediciones. Bogotá, (COL), p 219, ISBN: 978-958-648-651-4

  31. Patten CL, Glick BR (2002) Regulation of indole-acetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can J Microbiol 48:635–642

    Article  PubMed  CAS  Google Scholar 

  32. Pelaez J, Vásquez LE, Díaz TJ, Castañeda DA, Rodríguez E, Arango RE (2006) Use of a micro title plate dilution assay to measure activity of antifungal compounds against Mycosphaerella fijiensis Morelet. Rev Fac Nal Agr Medellin 59:3425–3433

    Google Scholar 

  33. Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C (2004) Biofilm formation in plant-microbe associations. Curr Opin Microbiol 7:602–609

    Article  PubMed  CAS  Google Scholar 

  34. Reid JD, Ogrydziak DM (1981) Chitinase-overproducing mutant of Serratia marcescens. Appl Environ Microbiol 41:664–669

    PubMed  CAS  Google Scholar 

  35. Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893

    Article  PubMed  Google Scholar 

  36. Riveros AS, Giraldo CI, Gamboa A (2003) Microbiological control of black leaf streak disease. In: Jacome L (ed) and al. 2003. Mycosphaerella leaf spot diseases of bananas: present status and outlook. Proceedings of the Workshop on Mycosphaerella leaf spot diseases. San Jose (CRI), 2002/05/20-23. Montpellier (FRA): INIBAP, p 317, ISBN: 2-910810-57-7

  37. Romantschuck M, Boureau T, Roine E, Haapalainen M, Taira S (2002) The role of pili and flagella in leaf colonization by Pseudomonas syringae. In: Lindow SE, Hecht-Poinar EI, Elliot VJ (eds) Phyllosphere microbiology. APS, St. Paul, pp 101–113

    Google Scholar 

  38. Romero M, Diaz T, Castañeda D, Arango R (1999) Diagnóstico por PCR del complejo Sigatoka en Colombia. Rev Fac Nal Agr Medellin 52:425–434

    Google Scholar 

  39. Sarniguet A, Lucas P (1992) Evaluation of population of fluorescent pseudomonads related to decline of take-all patch on turfgrass. Plant Soil 145:11–15

    Article  Google Scholar 

  40. Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89:515–521

    Article  PubMed  CAS  Google Scholar 

  41. Sierra L, Villegas V, Moncada RN, Mosquera S, Ramirez M, Mira JJ (2009) Producción de compuestos antimicrobianos por una cepa de B. subtilis UA321 contra Mycosphaerella fijiensis. ASCOLFI, Medellin

    Google Scholar 

  42. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–847

    Article  PubMed  CAS  Google Scholar 

  43. Sudin GW, Jacobs JL (1999) Ultraviolet radiation (UVR) sensitivity analysis and UVR survival strategies of a bacterial community from the phyllosphere of field-grown peanut (Arachis hypogeae L). Microb Ecol 38:27–38

    Article  Google Scholar 

  44. Talavera S, Bustamante E, González R, Sánchez V (1998) Selección y evaluación en laboratorio y campo de microorganismos glucanolíticos antagonistas a Mycosphaerella fijiensis. Manejo Integrado de Plagas 47:24–30

    Google Scholar 

  45. Vindas R, Ortiz F, Ramirez V (2004) Genotoxicidad de tres plaguicidas utilizados en la actividad bananera de Costa Rica. Rev Biol Trop 52:602–609

    Google Scholar 

  46. Wanger M, Amann R, Lemmer H, Scheleifer KH (1993) Probing activated-sludge with oligonucleotides specific for Proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol 59:1520–1525

    Google Scholar 

  47. World Health Organization (2011) Enterobacter sakazakii and other microorganisms in powered infact formula (July 2011). Available at http://www.who.int/en/P10 (cited June 2011)

  48. Yadav RK, Halley JM, Karamanoli K, Constantinidou HI, Vokou D (2004) Bacterial populations on leaves of Mediterranean plants: quantitative features and testing of distribution models. Environ Exp Bot 52:63–77

    Article  Google Scholar 

  49. Yadav RK, Karamanoli K, Vokou D (2005) Bacterial colonization of the phyllosphere of mediterranean perennial species as influenced by leaf structural and chemical features. Microb Ecol 50:185–196

    Article  PubMed  CAS  Google Scholar 

  50. Zhang Z, Yuen GY (2000) The role of chitinase production by Stenotrophomonas maltophilia strain C3 in biological control of Bipolaris sorokiniana. Phytopathology 90:384–389

    Article  PubMed  CAS  Google Scholar 

  51. Zheng Y, Xue QY, Xu LL, Xu Q, Lu S, Gu C, Guo JH (2011) A screening strategy of fungal biocontrol agents towards Verticillium wilt of cotton. Biol Control 56:209–216

    Article  Google Scholar 

Download references

Acknowledgments

This research was done thanks to the funding of Universidad EAFIT and Asociación de Bananeros de Colombia (AUGURA); to the co-funding of Departamento Administrativo de Ciencia, Tecnología e Innovación de Colombia (COLCIENCIAS; project code, 121640320656) and to the support of Universidad Nacional de Colombia. Authorization for Scientific Research Number: 200-03-20-01-1312-2009. The authors would like to thank the Ecoepidemiology and Biological Control Laboratory of Universidad de Antioquia for providing some of the strains used in this research and to Dr. Joseph Kloepper (Auburn University, EEUU) and Dr. Camilo Ramírez (Universidad de Antioquia, Colombia) for their advice in the structuring and development of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeska Villegas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceballos, I., Mosquera, S., Angulo, M. et al. Cultivable Bacteria Populations Associated with Leaves of Banana and Plantain Plants and Their Antagonistic Activity Against Mycosphaerella fijiensis . Microb Ecol 64, 641–653 (2012). https://doi.org/10.1007/s00248-012-0052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0052-8

Keywords

Navigation