Skip to main content
Log in

Accumulation of androstadiene-dione by overexpression of heterologous 3-ketosteroid Δ1-dehydrogenase in Mycobacterium neoaurum NwIB-01

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Mycobacterium neoaurum NwIB-01 exhibits powerful ability to cleave the side chain of soybean phytosterols to accumulate 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD). The difficulty in separation of AD from ADD is one of the key bottlenecks to the microbial transformation of phytosterols in the industry. To enhance ADD quantity in products, 3-ketosteroid Δ1-dehydrogenase genes (kstD M and kstD A) were obtained from M. neoaurum NwIB-01 and Arthrobacter simplex respectively. Using replicating vector pMV261, kstD M and kstD A were overexpressed in M. neoaurum NwIB-01. For foreign gene stable expression, the integration vector pMV306 was used for kstD M/kstD A overexpression and the relevant sequences of promoter and kanamycin antibiotic resistance gene sequences were amplified by PCR to verify plasmid integrity. The resultant plasmid and mutant strain were verified and the kstD augmentation mutants were good ADD-producing strains. The ADD producing capacity of NwIB-04 and NwIB-05 was 0.1401 and 0.1740 g/l (cultured in shake bottles with 0.4 g/l phytosterols), and the molar ratio of ADD in products was 98.34 and 98.60 %, respectively. This study on the manipulation of the main kstDM gene in Mycobacterium sp. provides a feasible way to achieve excellent phytosterol-transformation strains with high product purity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amin HAS, El-Hadi AA, Mohamed SS (2010) Immobilization of Mycobacterium sp. NRRL B-3805 cells onto radiation crosslinked PVA/PVP hydrogels for production of androstenones from beta-sitosterol. Aust J Basic Appl Biosci 4(8):2196–2205

    CAS  Google Scholar 

  • Bigi F, Taboga O, Romano MI, Alito A, Fisanotti JC, Cataldi AA (1999) Expression of the Mycobacterium bovis P36 gene in Mycobacterium smegmatis and the baculovirus/insect cell system. Braz J Med Biol Res 32(1):29–37

    Article  CAS  Google Scholar 

  • Braunstein M, Brown AM, Kurtz S, Jacobs WR (2001) Two nonredundant SecA homologues function in mycobacteria. J Bacteriol 183(24):6979–6990

    Article  CAS  Google Scholar 

  • Brown AC, Parish T (2006) Instability of the acetamide-inducible expression vector pJAM2 in Mycobacterium tuberculosis. Plasmid 55(1):81–86

    Article  CAS  Google Scholar 

  • Brzostek A, Sliwinski T, Rumijowska-Galewicz A, Korycka-Machala M, Dziadek J (2005) Identification and targeted disruption of the gene encoding the main 3-ketosteroid dehydrogenase in Mycobacterium smegmatis. Microbiology 151:2393–2402

    Article  CAS  Google Scholar 

  • Choi KP, Molnár I, Murooka Y (1995) Secretory overproduction of Arthrobacter simplex 3-ketosteroid delta 1-dehydrogenase by Streptomyces lividans with a multi-copy shuttle vector. Appl Microbiol Biotechnol 43(6):1044–1049

    Article  CAS  Google Scholar 

  • Claudino MJ, Soares D, Van Keulen F, Marques MP, Cabral JM, Fernandes P (2008) Immobilization of mycobacterial cells onto silicone—assessing the feasibility of the immobilized biocatalyst in the production of androstenedione from sitosterol. Bioresour Technol 99(7):2304–2311

    Article  CAS  Google Scholar 

  • Donova MV (2007) Transformation of steroids by actinobacteria: a review. Appl Biochem Microbiol 43:1–14

    CAS  Google Scholar 

  • Fernandes P, Cabral JMS (2007) Phytosterols: applications and recovery methods. Bioresour Technol 98:2335–2350

    Article  CAS  Google Scholar 

  • Gavigan JA, Aínsa JA, Pérez E, Otal I, Martín C (1997) Isolation by genetic labeling of a new mycobacterial plasmid, pJAZ38, from Mycobacterium fortuitum. J Bacteriol 179(13):4115–4122

    CAS  Google Scholar 

  • Knol J, Bodewits K, Hessels GI, Dijkhuizen L, van der Geize R (2008) 3-Keto-5α-steroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1 and its orthologue in Mycobacterium tuberculosis H37Rv are highly specific enzymes that function in cholesterol catabolism. Biochem J 410:339–346

    Article  CAS  Google Scholar 

  • Kumar D, Srivastava BS, Srivastava R (1998) Genetic rearrangements leading to disruption of heterologous gene expression in mycobacteria: an observation with Escherichia coli beta-galactosidase in Mycobacterium smegmatis and its implication in vaccine development. Vaccine 16(11–12):1212–1215

    Google Scholar 

  • Liu Y, Chen G, Ge F, Li W, Zeng L, Cao W (2011) Efficient biotransformation of cholesterol to androsta-1,4-diene-3,17-dione by a newly isolated actinomycete Gordonia neofelifaecis. World J Microbiol Biotechnol 27:759–765

    Article  CAS  Google Scholar 

  • Malaviya A, Gomes J (2008) Androstenedione production by biotransformation of phytosterols. Bioresour Technol 99:6725–6737

    Article  CAS  Google Scholar 

  • Malaviya A, Gomes J (2009) Rapid screening and isolation of a fungus for sitosterol to androstenedione biotransformation. Appl Biochem Biotechnol 158(2):374–386

    Article  CAS  Google Scholar 

  • Molchanova MA, Andryushina VA, Savinova TS, Stytsenko TS, Rodina NV, Voishvillo NE (2007) Preparation of androsta-1,4-diene-3,17-dione from sterols using Mycobacterium neoaurum VKPM Ac-1656 strain. Russ J Bioorg Chem 33(3):354–358

    CAS  Google Scholar 

  • Papavinasasundaram KG, Colston MJ, Davis EO (1998) Construction and complementation of a recA deletion mutant of Mycobacterium smegmatis reveals that the intein in Mycobacterium tuberculosis recA does not affect RecA function. Mol Microbiol 30(3):525–534

    Article  CAS  Google Scholar 

  • Parker AE, Bermudez LE (1997) Expression of the green fluorescent protein (GFP) in Mycobacterium avium as a tool to study the interaction between Mycobacteria and host cells. Microb Pathog 22(4):193–198

    CAS  Google Scholar 

  • Pérez C, Falero A, Hung BR, Tirado S, Balcinde Y (2005) Bioconversion of phytosterols to androstanes by mycobacteria growing on sugar cane mud. J Ind Microbiol Biotechnol 32(3):83–86

    Article  Google Scholar 

  • Rodina NV, Molchanova MA, Voishvillo NE, Andryushina VA, Stytsenko TS (2008) Conversion of phytosterols into androstenedione by Mycobacterium neoaurum. Appl Biochem Microbiol 44(1):48–54

    Article  CAS  Google Scholar 

  • van der Geize R, Hessels GI, van Gerwen R, Vrijbloed JW, van der Meijden P, Dijkhuizen L (2000) Targeted disruption of the kstD gene encoding 3-ketosteroid Δ1-dehydrogenase isoenzyme of Rhodococcus erythropolis SQ1. Appl Environ Microbiol 66:2029–2036

    Article  Google Scholar 

  • van der Geize R, Hessels GI, van Gerwen R, van der Meijden P, Dijkhuizen L (2001) Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Δ1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS Microbiol Lett 18:197–202

    Article  Google Scholar 

  • van der Geize R, Hessels GI, Dijkhuizen L (2002) Molecular and functional characterization of the kstD2 gene of Rhodococcus erythropolis SQ1 encoding a second 3-ketosteroid Δ1-dehydrogenase isoenzyme. Microbiology 148:3285–3292

    Google Scholar 

  • van der Geize R, Yam K, Heuser T, Wilbrink MH, Hara H, Anderton MC, Sim E, Dijkhuizen L, Davies JE, Mohn WW, Eltis LD (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci 104(6):1947–1952

    Article  Google Scholar 

  • Voishvillo NE, Andryushina VA, Savinova TS, Stytsenko TS, Vasil’eva NA, Turova TP, Kolganova TV, Skryabin KG (2003) Identification of a new steroid-transforming strain of mycobacteria as Mycobacterium neoaurum. Appl Biochem Microbiol 39(2):152–157

    Article  CAS  Google Scholar 

  • Wei W, Fan SY, Wang FQ, Wei DZ (2010a) A new steroid-transforming strain of Mycobacterium neoaurum and cloning of 3-ketosteroid 9α-hydroxylase in NwIB-01. Appl Biochem Biotechnol 162:1446–1456

    Article  CAS  Google Scholar 

  • Wei W, Wang FQ, Fan SY, Wei DZ (2010b) Inactivation and augmentation of the main 3-ketosteroid- Δ1-dehydrogenase in Mycobacterium neoaurum NwIB-01: biotransformation of soybean phytosterols to 4-androstene-3,17-dione or 1,4-androstadiene-3,17-dione. Appl Environ Microbiol 76(13):4578–4582

    Article  CAS  Google Scholar 

  • Whiteford DC, Klingelhoets JJ, Bambenek MH, Dahl JL (2011) Deletion of the histone-like protein (Hlp) from Mycobacterium smegmatis results in increased sensitivity to UV exposure, freezing and isoniazid. Microbiology 157:327–335

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. W.R. Jacobs Jr. (Howard Hughes Medical Institute, USA) for providing plasmid pMV261 and pMV306. This research was financially supported by the Fundamental Research Funds for the Central Universities of China (No. WF1114017), the National Natural Science Foundation of China (No. C050203-31200596), the School Research Funds of ECAST (No. YF0157129), the National Special Fund for State Key Laboratory of Bioreactor Engineering (No. 2060204), and the National Basic Research Program of China (No. 2009CB724703).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng-Qing Wang or Dong-Zhi Wei.

Additional information

Wei Wei and Shu-Yue Fan provide the equal work in this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, W., Fan, SY., Wang, FQ. et al. Accumulation of androstadiene-dione by overexpression of heterologous 3-ketosteroid Δ1-dehydrogenase in Mycobacterium neoaurum NwIB-01. World J Microbiol Biotechnol 30, 1947–1954 (2014). https://doi.org/10.1007/s11274-014-1614-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1614-3

Keywords

Navigation