Skip to main content
Log in

Efficient biotransformation of cholesterol to androsta-1,4-diene-3,17-dione by a newly isolated actinomycete Gordonia neofelifaecis

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A newly isolated actinomycete, Gordonia neofelifaecis (NRRL B-59395) from the faeces of Neofelis nebulosa, was used to selectively degrade the side-chain of cholesterol. The intermediates were purified and characterized. Quantitative analysis of the accumulated metabolites from cholesterol side-chain cleavage was conducted during the biotransformation. The results showed that the profile of accumulated intermediates was different from those of other reported microorganisms. Among the five metabolites, androsta-1,4-diene-3,17-dione (ADD) was the main product of the side-chain degradation, with a high conversion rate (87.2%), indicating its potential for industrial production of ADD. At the end of transformation, the substrate cholesterol was completely consumed. The effect of some factors on the bioconversion was also investigated. To our best knowledge, this is the first report regarding cholesterol side-chain cleavage using bacteria belonging to Gordonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad S, Roy PK, Khan AW, Basu SK, Johri BN (1991) Microbial transformation of sterols to C19 steroids by Rhodococcus equi. World J Microbiol Biotechnol 7:557–561

    Article  CAS  Google Scholar 

  • Al-Aboudi A, Mohammad MY, Musharraf SG, Choudhary MI (2008) Microbial transformation of testosterone by Rhizopus stolonifer and Fusarium lini. Nat Prod Res 22:1498–1509

    Article  CAS  Google Scholar 

  • Allain CC, Poon LS, Chan CSG, Richmond W, Fu PC (1974) Enzymatic determination of total serum cholesterol. Clin Chem 20:470–475

    CAS  Google Scholar 

  • Arima K, Nakamatsu W, Beppu T (1978) Microbial production of 3- oxobisnorchola-1, 4-dien-22-oic acid. Agric Biol Chem 42:411–416

    CAS  Google Scholar 

  • Barton HRD, Lester DJ, Ley SV (1980) Dehydrogenation of steroidal and triterpenoid ketones using benzeneseleninic anhydride. J Chem Soc Perkin Trans 1:2209–2212

    Article  Google Scholar 

  • Buchanan RE, Gibbons NE (1974) Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins Co, Baltimore, pp 290–340

    Google Scholar 

  • Chiang YR, Ismail W, Müller M, Fuchs G (2007) Initial steps in the anoxic metabolism of cholesterol by the denitrifying Sterolibacterium denitrificans. J Biol Chem 282:13240–13249

    Article  CAS  Google Scholar 

  • Dogra N, Qazi G (2001) Steroid biotransformation by different strains of Micrococcus sp. Folia Microbiol 46:17–20

    Article  CAS  Google Scholar 

  • Faramarzi MA, Yazdi MT, Jahandar H, Amini M, Monsef-Esfahani HR (2006) Studies on the microbial transformation of androsta-1, 4-diene-3 17-dione with Acremonium strictum. J Ind Microbiol Biotechnol 33:725–733

    Article  CAS  Google Scholar 

  • Hiraishi A, Shin YK, Ueda Y, Sugiyama J (1994) Automated sequencing of PCR-amplified 16S rRNA on ‘Hydrolink’ gels. J Microbiol Methods 19:145–154

    Article  CAS  Google Scholar 

  • Iida M, Murohisa I, Yoneyama A, Iizuka H (1985) Microbiological production of 20-carboxy-pregna-1, 4-dien-3-one from sitosterol with high yield by a Rhodococcus species. J Ferment Technol 63:559–561

    CAS  Google Scholar 

  • Johnson WS, Vredenburgh WA, Pike JE (1960) Steroid total synthesis- hydrochrysene approach. Part XII: an alternative route to testosterone, the synthesis of testosterone and of dl-13-isotestosterone. J Am Chem Soc 82:3409–3415

    Article  CAS  Google Scholar 

  • Kieslich K (1985) Microbial side-chain degradation of sterols. J Basic Microbiol 25:461–474

    Article  CAS  Google Scholar 

  • Kim KK, Lee KC, Klenk H-P, Oh HM, Lee JS (2009) Gordonia kroppenstedtii sp. nov., a phenol-degrading actinomycete isolated from a polluted stream. Int J Syst Evol Microbiol 59:1992–1996

    Article  CAS  Google Scholar 

  • Lee CY, Chen CD, Liu WH (1993) Production of androsta-1, 4-diene-3, 17-dione from cholesterol using two-step microbial transformation. Appl Microbiol Biotechnol 38:447–452

    Article  CAS  Google Scholar 

  • Lin Y, Song X, Fu J, Lin J, Qu Y (2009) Microbial transformation of phytosterol in corn flour and soybean flour to 4-androstene-3 17-dione by Fusarium moniliforme. Bioresour Technol 100:1864–1867

    Article  CAS  Google Scholar 

  • Linos A, Berekaa MM, Steinbüchel A, Kim KK, Sproer C, Kroppenstedt RM (2002) Gordonia westfalica sp. nov., a novel rubber-degrading actinomycete. Int J Syst Evol Microbiol 52:1133–1139

    Article  CAS  Google Scholar 

  • Liu YC, Ge FL, Chen GY, Li W, Ma PM, Zhang GX, Zeng LH (2010) Gordonia neofelifaecis sp. nov., a cholesterol side-chain cleaving actinomycete isolated from the faeces of Neofelis nebulosa. Int J Syst Evol Microbiol (in press)

  • Malaviya N, Gomes J (2008) Androstenedione production by biotransformation of phytosterols. Bioresour Technol 99:6725–6737

    Article  CAS  Google Scholar 

  • Minami I, Takahashi K, Shimizu I, Kimura T, Tsuji J (1986) New synthetic methods for α, β-unsaturated ketones, aldehydes, ester and lactones by the palladium- catalyzed reactions of silyl enol ethers, ketene silyl acetals, and enol acetates with allyl carbonates. Tetrahedron 42:2971–2977

    Article  CAS  Google Scholar 

  • Nagasawa M, Bae M, Tamura G, Arima K (1969) Microbial transformation of sterols part II. Cleavage of sterol side chains by microorganisms. Agric Biol Chem 33:1644–1650

    CAS  Google Scholar 

  • Owen RW, Mason AN, Bilton RF (1983) The degradation of cholesterol by Pseudomonas sp. NCIB 10590 under aerobic conditions. J Lipid Res 24:1500–1511

    CAS  Google Scholar 

  • Wang ZL, Zhao F, Chen D, Li D (2006) Biotransformation of phytosterol to produce androstadienedione by resting cells of Mycobacterium in cloud point system. Process Biochem 41:557–561

    Article  CAS  Google Scholar 

  • Wilds AL, Djerassi C (1946) The preparation and partial aromatization of 1, 4-cholestadienone-3 by dienone-phenol rearrangement. J Am Chem Soc 68:1712–1715

    Article  CAS  Google Scholar 

  • Yamakawa K, Satoh T, Ohba N, Sakaguchi R (1979) Angular hydroxylation of polycyclic ketones using benzeneseleninic anhydride. Chem Lett 763–764

  • Ye DP, Lei J, Li W, Ge F (2008) Purification and characterization of extracellular cholesterol oxidase from Enterobacter sp. World J Microbiol Biotechnol 24:2227–2233

    Article  CAS  Google Scholar 

  • Yuan Z, Han L, Su H, Shi D, Sun J, LI S, Shi J (2008) The chemical constituents from red alga Gymnogongrus flabelliformis Harv. Chin J Oceanol Limnol 26:190–192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Provincial Science & Technology Department of Sichuan, China (2008JY0103-1 2009JY0067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Chen, G., Ge, F. et al. Efficient biotransformation of cholesterol to androsta-1,4-diene-3,17-dione by a newly isolated actinomycete Gordonia neofelifaecis . World J Microbiol Biotechnol 27, 759–765 (2011). https://doi.org/10.1007/s11274-010-0513-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-010-0513-5

Keywords

Navigation