Skip to main content
Log in

Pyocyanin: production, applications, challenges and new insights

  • REVIEW
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is an opportunistic, Gram-negative bacterium and is one of the most commercially and biotechnologically valuable microorganisms. Strains of P. aeruginosa secrete a variety of redox-active phenazine compounds, the most well studied being pyocyanin. Pyocyanin is responsible for the blue-green colour characteristic of Pseudomonas spp. It is considered both as a virulence factor and a quorum sensing signalling molecule for P. aeruginosa. Pyocyanin is an electrochemically active metabolite, involved in a variety of significant biological activities including gene expression, maintaining fitness of bacterial cells and biofilm formation. It is also recognised as an electron shuttle for bacterial respiration and as an antibacterial and antifungal agent. This review summarises recent advances of pyocyanin production from P. aeruginosa with special attention to antagonistic property and bio-control activity. The review also covers the challenges and new insights into pyocyanin from P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahuja EG (2006) Towards elucidation of the phenazine biosynthesis pathway of pseudomonas with the structural and functional analysis of the enzymes PhzA, B, G and Bcep A. Thesis, Max Planck Institute for Molecular Physiology and Department of Chemistry, University of Dortmund, Germany, p 151

  • Al Hinai AH, Al Sadi AM, Al Bahry SN, Mothershaw AS, Al Said FA, Al Harthi SA, Deadman ML (2010) Isolation and characterization of Pseudomonas aeruginosa with antagonistic activity against Pythium aphani dermaturm. J Plant Pathol 92:653–660

    CAS  Google Scholar 

  • Ali Siddiqui I, Ehetshamul-Haque S, Shahid Shaukat S (2001) Use of rhizobacteria in the control of root rot–root knot disease complex of mungbean. J Phytopathol 149:337–346

    Article  Google Scholar 

  • Angell S, Bench BJ, Williams H, Watanabe CM (2006) Pyocyanin isolated from a marine microbial population: synergistic production between two distinct bacterial species and mode of action. Chem Biol 13:1349–1359

    Article  CAS  Google Scholar 

  • Anjaiah V, Cornelis P, Koedam N (2003) Effect of genotype and root colonization in biological control of fusarium wilts in pigeon pea and chick pea by Pseudomonas aeruginos PNAI. Can J Microbiol 49:85–91

    Article  CAS  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Hofte M (2002) Induction of systemic resistance to Botrytis Cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin and pyocyanin. Mol Plant Microbe Interact 115:1147–1156

    Article  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilory S, Vivanco JM (2006) The role of root exudates in rhizosphere Interactions with plants and other organisms. Annu Rev Plant Biol 57:233–236

    Article  CAS  Google Scholar 

  • Bakthavatchalu S, Shivakumar S, Sullia SB (2013) Molecular detection of antibiotic related genes from Pseudomonas aeruginosa FP6, an antagonist towards Rhizoctonia solani and Colletotrichum gloeosporioides. Turk J Biol 37:289–295

    CAS  Google Scholar 

  • Baron SS, Rowe JJ (1981) Antibiotic action of pyocyanin. Antimicrob Agents Chemother 20:814–820

    Article  CAS  Google Scholar 

  • Baron SS, Terranova G, Rowe JJ (1989) Molecular mechanism of the antimicrobial action of pyocyanin. Curr Microbiol 18:223–230

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth promoting rhizobacteria in two classification: biocontrol PGPB (plant growth promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  • Brown VI, Lowbury EJ (1965) Use of and improved cetrimide agar medium and other culture methods for Pseudomonas aeruginosa. J Clin Pathol 18:752–756

    Article  CAS  Google Scholar 

  • Bryant S, Huerta V, Mihalik K, Crixell SH, Vattem DA (2008) Medicinal plants from Indian Subcontinent decrease quorum sensing dependent virulence in Pseudomonas aeruginosa. J Nat Rem 8:138–150

    Google Scholar 

  • Burton MO, Campbell JJ, Eagles BA (1948) The mineral requirements for pyocyanin production. Can J Res 26:15–22

    Article  CAS  Google Scholar 

  • Byng GS, Eustice DC, Jensen RA (1979) Biosynthesis of phenazine pigment in mutant and wild type cultures of Pseudomonas aeruginosa. J Bacteriol 138:846–852

    CAS  Google Scholar 

  • Caldwell CC, Chen Y, Goetzmann HS, Hao Y, Borchers MT, Hassett DJ, Young LR, Mavrodi D, Thomashow L, Lau GW (2009) Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. Am J Pathol 175:2473–2488

    Article  CAS  Google Scholar 

  • Chang PC, Blackwood AC (1969) Simultaneous production of three phenazine pigments by Pseudomonas aeruginosa Mac 436. Can J Microbiol 15:439–444

    Article  CAS  Google Scholar 

  • Clatworthy AE, Pierson E, Hung DT (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3:541–548

    Article  CAS  Google Scholar 

  • Cook JR (1988) Biological control and holistic plant health care in agriculture. Am J Altern Agric 3:51–62

    Article  Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31:53–80

    Article  CAS  Google Scholar 

  • Cox CD (1986) Role of pyocyanin in the acquisition of iron from transferring. Infect Immun 52:263–270

    CAS  Google Scholar 

  • Das T, Manefield M (2012) Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLoS One 7(10):e46718

    Article  CAS  Google Scholar 

  • Das T, Kutty SK, Kumar N, Manefield M (2013) Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation. PLoS One 8(3):e58299

    Article  CAS  Google Scholar 

  • De Vleesschauwer D, Cornelis P, Hofte M (2006) Redox active pyocyanin secreted by P. aeruginosa 7 NSK2 triggers systems resistance to Marnaporthe grisea but enhances Rhizoctoria solani susceptibility in rice. Mol Plant Microbe Interact 19:1406–1419

    Article  Google Scholar 

  • Dilantha Fernando WG, Ramarthanam R, Krishnamoorth AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in bio control. Soil Biol Biochem 37:955–964

    Article  Google Scholar 

  • Driscoll JA, Brody SL, Kollef MH (2007) The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67:351–368

    Article  CAS  Google Scholar 

  • El-Samerraie FT, Mohammed AR, Al Mosawi MA, Matloob SEA (1997) Treatment of Pseudomonas life threatening chronic suppurative otitis media by new conservative therapy—a prospective study. J Islam Acad Sci 10:109–112

    Google Scholar 

  • Fontoura R, Spada JC, Silveira ST, Tsai SM, Brandelli A (2009) Purification and characterization of an antimicrobial peptide produced by Pseudomonas sp. strain 4B. World J Microbiol Biotechnol 25:205–213

    Article  CAS  Google Scholar 

  • Fordos MJ (1863) Recherches sur les matieres colorants des suppurations blues, pyocyaninet pyozanthos. ibid 56:1128–1131

    Google Scholar 

  • Fothergill JL, Panagea S, Hart CA, Walshaw MJ, Pitt TL, Winstanley C (2007) Widespread pyocyanin over-production among isolates of a cystic fibrosis epidemic strain. BMC Microbiol 7:45

    Article  Google Scholar 

  • Frank LH, De Moss RD (1958) On the biosynthesis of pyocyanine. J Bacteriol 77:776–782

    Google Scholar 

  • Gessard C (1984) Classics in infectious diseases. On the blue and green coloration that appears on bandages. Rev Infect Dis 6(3):775–776

    Article  Google Scholar 

  • Gibson J, Sood A, Hogan DA (2009) Pseudomonas aeruginosaCandida albicans interactions: localization and fungal toxicity of a phenazine derivatives. App Environ Microbiol 75:504–513

    Article  CAS  Google Scholar 

  • Glazebrook JS, Campbell RS, Hutchinson GW, Stallman ND (1978) Rodent zoonoses in North Queensland: the occurrence and distribution of zoonotic infections in North Queensland rodents. Aust J Exp Biol Med Sci 56:147–156

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth of free living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Gohain N, Linda ST, Mavrodi DV, Wouf BF (2006) The purification, crystallization and preliminary structural characterization of PhzM, a phenzine modifying methyltransferase from Pseudomonas aeruginosa. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:887–890

    Article  CAS  Google Scholar 

  • Green SK, Schroth MN, Cho JJ, Kominos SK, Vitanza-Jack VB (1974) Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Appl Microbiol 28:987–991

    CAS  Google Scholar 

  • Hassan HM, Fridorich I (1980) Mechanism of the antibiotic action of pyocyanine. J Bacreriol 141:156–163

    CAS  Google Scholar 

  • Hassanein WA, Awny NM, El-Mougith AA, Salah El-Dein SH (2009) Characterization and antagonistic activities of metabolite produced by Pseudomonas aeruginosa Sha8. J Appl Sci Res 5:392–403

    CAS  Google Scholar 

  • Hassani HH, Hasan HM, Al-Saadi A, Ali AM, Muhammad MH (2012) A comparative study on cytotoxicity and apoptotic activity of pyocyanin produced by wild type and mutant strains of Pseudomonas aeruginosa. Eur J Exp Biol 2:1389–1394

    CAS  Google Scholar 

  • Herbert RB, Holliman FG, Sheridan JB (1974) Biosynthesis of iodine, incorporation of D-(1-14C), D-(6-14C) and D-(1,6,7-14C3)-shikimic acid. Tertrahedron Lett 48:4201–4204

    Article  Google Scholar 

  • Herbert RB, Holliman FG, Sheridan JB (1976) Biosynthesis of microbial phenazines: incorporation of shikmic acid. Tetrahedron Lett 8:639–642

    Article  Google Scholar 

  • Ho Sui SJ, Fedynak A, Hsiao WW, Langille MG, Brinkman FS (2009) The association of virulence factors with genomic islands. PLoS One 4:e8094

    Article  Google Scholar 

  • Ho Sui SJ, Lo R, Fernandes AR, Caulfield MDG, Lerman JA, Xie L, Bourne PE, Baillie DL, Brinkman FSL (2012) Raloxifene attenuates Pseudomonas aeruginosa pyocyanin production and virulence. Int J Antimicrob Agents 40:246–251

    Article  CAS  Google Scholar 

  • Hogan DA, Kolter R (2002) PseudomonasCandida interaction: an ecological role for virulence factors. Science 296:2229–2232

    Article  CAS  Google Scholar 

  • Hollstein U, Marshall LG (1972) Biosynthesis of phenazines. J Org Chem 37:3510–3514

    Article  CAS  Google Scholar 

  • Hollstein U, McCamey DA (1973) Biosynthesis of phenazines. II Incorporation of (6–14C)-d-shikimic acid into phenazine-1-carboxylic acid and iodinin. J Org Chem 38:3415–3417

    Article  CAS  Google Scholar 

  • Ingledew WM, Campbell JJ (1969) A new resuspension medium for pyocyanine production. Can J Microbiol 15:595–598

    Article  CAS  Google Scholar 

  • Kaleli I, Cevahir N, Demir M, Yildrim U, Sahin R (2007) Anticandidal activity of Pseudomonas aeruginosa strains isolated from clinical specimens. Mycoses 50:74–78

    Article  Google Scholar 

  • Karatuna O, Yagci A (2010) Analysis of quorum sensing-dependent virulence factor production and its relationship with antimicrobial susceptibility in Pseudomonas aeruginosa respiratory isolates. Clin Microbiol Infect 16:1770–1775

    Article  CAS  Google Scholar 

  • Karpagam S, Sudhakar T, Lakshmipathy M (2013) Microbicidal response of pyocyanin produced by P. Aeruginosa toward clinical isolates of fungi. Int J Pharm Pharm Sci 5:870–873

    Google Scholar 

  • Kerr JR (1994) Suppression of fungal growth exhibited by Pseudomonas aeruginosa. J Clin Microbiol 32:525–527

    CAS  Google Scholar 

  • Kerr JR, Taylor GW, Rutman A, Hoiby N, Cole PJ, Wilson R (1999) Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J Clin Pathol 52:385–387

    Article  CAS  Google Scholar 

  • Khamdan K, Suprapta DN (2011) Induction of plant resistance against soyabean stunt virus using some formulations of Pseudomonas aeruginosa. J ASSAAS 17:98–105

    Google Scholar 

  • Khare E, Arora NK (2011) Dual activity of pyocyanin from Pseudomonas aeruginosa—antibiotic against phytopathogen and signal molecule for biofilm development by rhizobia. Can J Microbiol 57:708–713

    Article  CAS  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307

    CAS  Google Scholar 

  • Krishnan T, Yin WF, Chan KG (2012) Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa PAO1 by ayurveda spice clove (Syzygium Aromaticum) bud extract. Sensors 12:4016–4030

    Article  CAS  Google Scholar 

  • Lau GW, Hassett DJ, Ran H, Kong F (2004) The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 10:599–606

    Article  CAS  Google Scholar 

  • Liang H, Duan J, Sibley CD, Surette MG, Duan K (2011) Identification of mutants with altered phenazine production in Pseudomonas aeruginosa. J Med Microbiol 60:22–34

    Article  CAS  Google Scholar 

  • Lilly HA, Lowbury EJL (1972) Cetrimide-nalidixic agar as a selective medium for Pseudomonas aeruginosa. J Med Microbiol 5:151–153

    Article  CAS  Google Scholar 

  • Lundgren BR, Thornton W, Dornan MH, Villegas-Peñaranda LR, Boddy CN, Nomura CT (2013) Gene PA2449 is essential for glycine metabolism and pyocyanin biosynthesis in Pseudomonas aeruginosa PAO1. J Bacteriol 195:2087–3000

    Article  CAS  Google Scholar 

  • Machan ZA, Pitt TL, White W, Watson D, Taylor GW, Cole PJ, Wilson R (1990) Interaction between Pseudomonas aeruginosa and Staphylococcus aureus: description of an anti-staphylococcal substance. J Med Microbiol 34:213–217

    Article  Google Scholar 

  • Mallesh SB (2008) Plant growth promoting rhizobactaria their characterization and mechanism in the suppression of soil borne pathogens of coleus and ashwaghandha. Ph.D. thesis, University of Agricultural Sciences, Dharwad, India

  • Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS (2001) Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465

    Article  CAS  Google Scholar 

  • Mc Alester G, O’Gara F, Morrissey JP (2007) Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans. J Med Microbiol 57:563–569

    Article  Google Scholar 

  • Mercado-Blanco J, Bakker PA (2007) Interactions between plants and beneficial Pseudomonas sp.: exploiting beneficial traits for crop protection. Antonie Van Leeuwenhoek 92:367–389

    Article  Google Scholar 

  • Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174:135–142

    Article  CAS  Google Scholar 

  • Migula W (1984) Arbeiten aus clem Bakteriologischen Institute der Technischen Hoschschule. Zu Karlsruhe 1:235–238

    Google Scholar 

  • Millican RC (1962) Biosynthesis of pyocyanine. Incorporation of C14 Shikimic acid. Biochim Biophys Acta 57:407–409

    Article  CAS  Google Scholar 

  • Moore ERB, Tindall BJ, Martins Dos Santos VAP, Pieper DH, Juan-Luis R, Palleroni NJ (2006) Nonmedical: Pseudomonas. Prokaryotes 6:646–703

    Article  Google Scholar 

  • Morkunas B, Galloway Warren RJD, Wright M, Ibbeson BM, Hodgkinson JT, O’Connell KMG, Bartolucci N, Valle MD, Welch M, Spring DR (2012) Inhibition of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells by quorum sensing autoinducer-mimics. Org Biomol Chem 10:8452–8464

    Article  CAS  Google Scholar 

  • Norman RS, Moeller P, Mc Donald TJ, Morris PJ (2004) Effect of pyocyanin on a crude oil degrading microbial community. Appl Environ Microbiol 70:4004–4011

    Article  CAS  Google Scholar 

  • O’Malley YQ, Reszka KJ, Rasmussen GT, Abdalla MY, Denning GM, Britigan BE (2003) The Pseudomonas secretary product pyocyanin inhibits catalase activity in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 285:1077–1086

    Google Scholar 

  • Onbasli D, Aslim B (2008) Determination of antimicrobial activity and production of some metabolites by Pseudomanas aeruginosa B1 and B2 in sugar beet molasses. Afr J Biotechnol 7:4614–4619

    CAS  Google Scholar 

  • Pal KK, Gardner BMS (2006) Biological control of plant pathogens. Plant Health Instr 1–25. doi:10.1094/PHI-A-2006-1117-02

  • Pal R, Revathi R (1998) Susceptibility of yeasts to Pseudomonas aeruginosa. Indian J Med Microbiol 16:72–74

    Google Scholar 

  • Palleroni NJ (2005) Pseudomonas. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 323–379

    Google Scholar 

  • Parsons JF, Greenhagen BT, Shi K, Calabrese K, Robinson H, Ladner JE (2007) Structural and functional analysis of the pyocyanin biosynthetic protein Phz M from Pseudomonas aeruginosa. Biochemistry 46:1821–1828

    Article  CAS  Google Scholar 

  • Pierson LS, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of the bacteria in the environment and biotechnological process. Appl Micorbiol Biotechnol 18:1659–1670

    Article  Google Scholar 

  • Porter RC (2009) Studies in pigment production by Pseudomonas aeruginosa. M.S. thesis, Texas Tech University, TX, 59 p

  • Rada B, Leto TL (2013) Pyocyanin effects on respiratory epithelium: relevance in Pseudomonas aeruginosa airway infections. Trends Microbiol 21:73–81

    Article  CAS  Google Scholar 

  • Rada B, Jendrysik MA, Pang L, Hayes CP, Yoo D-g, Park JJ, Moskowitz SM, Malech HL, Leto TL (2013) Pyocyanin-enhanced neutrophil extracellular trap formation requires the NADPH oxidase. PLoS One 8(1):e54205

    Article  CAS  Google Scholar 

  • Rahman PK, Pasirayi G, Auger V, Ali Z (2009) Development of simple and low cost micro–bioreactor for high throughput bio-processing. Biotechnol Lett 31:209–214

    Article  CAS  Google Scholar 

  • Ran H, Hassett DJ, Lau GW (2003) Human targets of Pseudomonas aeruginosa pyocyanin. Proc Natl Acad Sci 100:14315–14320

    Article  CAS  Google Scholar 

  • Rane MR, Sarode PD, Chaudhari BL, Chincholkar SB (2007) Detection, isolation and identification of phenazine 1-carboxylic acid produced by biocontrol strains of Pseudomonas aeruiginosa. J Sci Ind Res 66:627–631

    CAS  Google Scholar 

  • Raoof WM, Latif IAR (2010) In vitro study of the swarming phemomena and antimicrobial activity of pyocyanin produced by Pseudomonas aeruginosa isolated from different human infections. Eur J Sci Res 47:405–421

    Google Scholar 

  • Reyes EA, Bale MJ, Cannon WH, Matsen JM (1981) Identification of Pseudomonas aeruginosa by pyocyanin production on tech agar. J Clin Microbiol 13:456–458

    CAS  Google Scholar 

  • Saha S, Thavasi R, Jayalakshmi S (2008) Phenazine pigments from Pseudomonas aeruginosa and their application as antibacterial agent and food colourants. Res J Microbiol 3:122–128

    Article  CAS  Google Scholar 

  • Saosoong K, Wongphathanakul W, Paorsiri C, Ruangviriyachi C (2009) Isolation and analysis of antibacterial substance produced from Pseudomonas aeruginosa TISTR 781. KKU Sci J 37:163–172

    Google Scholar 

  • Sheeba J (2007) Isolation, pigment production, antifungal activity and antibiogram pattern of Pseudomonas aeruginosa—a study. M.Phil., Thesis, Bharathidasan University, 39 p

  • Subramaniam L, Shriniwas B (1985) Rapid diagnosis of Pseudomonas aeruginosa infection by demonstration of pyocyanin and fluorescein. Indian J Med Res 81:561–566

    CAS  Google Scholar 

  • Sudhakar T, Karpagam S, Shiyama S (2013) Antifungal efficacy of pyocyanin produced from bioindicators of nosocomial hazards. Int J ChemTech Res 5:1101–1106

    CAS  Google Scholar 

  • Sunish Kumar R, Ayyadurai N, Pandiaraja P, Reddy AV, Venkateswarlu Y, Prakash O, Sakthivel N (2004) Characterization of anti-fungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad spectrum antifungal activity and biofertilizing traits. J Appl Microbiol 98:145–154

    Article  Google Scholar 

  • Suthar S, Chhimpa V, Singh S (2009) Bacterial contamination in drinking water: a case study in rural areas of northern Rajasthan, India. Environ Monit Asses 159:43–50

    Article  Google Scholar 

  • Sweden EG (2010) Study the effect of antibiotics on pyocyanin production from Pseudomonas aeruginosa and pyocyanin as antibiotic against different pathogenic bacteria. J Univ Anbar Pure Sci 4:15–18

    Google Scholar 

  • Wahba AH, Darrel JH (1965) The identification of a typical strains of Pseudomonas aeruginosa. J Gen Microbiol 38:329–342

    Article  CAS  Google Scholar 

  • Waksman SA, Woodruff HB (1940) The soil as a source of microorganisms antagonistic to disease producing bacteria. J Bacteriol 40:581–600

    CAS  Google Scholar 

  • Winstanley C, Fothergill JL (2008) The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol Lett 290:1–9

    Article  Google Scholar 

  • Young G (1947) Pigment production and antibiotic activity in cultures of Pseudomonas aeruginosa. J Bacteriol 54:109–117

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to all the researchers whose papers have been used for this review. Greatest gratitude goes to Luigi Lucini, Ph.D., Università Cattolica del Sacro Cuore, Institute of Environmental and Agricultural Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvakumar Dharmaraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayaseelan, S., Ramaswamy, D. & Dharmaraj, S. Pyocyanin: production, applications, challenges and new insights. World J Microbiol Biotechnol 30, 1159–1168 (2014). https://doi.org/10.1007/s11274-013-1552-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1552-5

Keywords

Navigation