Skip to main content
Log in

Serine O-acetyltransferase is important, but not essential for cysteine–methionine synthesis in Fusarium graminearum

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

O-acetyltransferase (SAT) is a key enzyme converting serine into O-acetylserine in the synthesis of sulphur-containing amino acids. To characterize the function of FgSAT in Fusarium graminearum, three deletion mutants of FgSAT (ΔFgSAT-1, -2 and -18) were obtained using a gene replacement strategy. The three mutants did not show recognizable phenotypic changes on potato dextrose agar medium, but exhibited a very weak growth on fructose gelatin agar (FGA) medium containing SO4 2− as sole sulfur source. Supplementation of O-acetylserine, cysteine, or methionine, but not serine, rescued the defect of mycelial growth in FgSAT deletion mutants, indicating that FgSAT is involved in conversion of serine into O-acetylserine. The three mutants had a decrease in conidiation in mung bean liquid, but not in carboxymethyl cellulose. Virulence, deoxynivalenol production and fungicide sensitivity assays found that the three mutants showed no significant difference from wild-type progenitor PH-1. Real-time PCR assays detected an increase in expression levels of FgOAHS, FgCBS and FgCGL genes involved in the alternative pathway in FgSAT deletion mutants, suggesting that the alternative pathway in F. graminearum is present and can operate. Addition of homoserine, the upstream substrate of the alternative pathway, also restored the normal mycelial growth of FgSAT deletion mutants on FGA, indicating that the alternative pathway in F. graminearum might be positively regulated by homoserine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Blandino M, Minelli L, Reyneri A (2006) Strategies for the chemical control of Fusarium head blight: effect on yield, alveographic parameters and deoxynivalenol contamination in winter wheat grain. Eur J Agron 25:193–201

    Article  CAS  Google Scholar 

  • Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang FE, Radford A, Selitrennikoff C, Galagan JE, Dunlap JC, Loros JJ, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker EU, Sachs MS, Marzluf GA, Paulsen I, Davis R, Ebbole DJ, Zelter A, Kalkman ER, O’Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt R (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68:1–108

    Article  CAS  Google Scholar 

  • Brzywczy J, Kacprzak MM, Paszewski A (2011) Novel mutations reveal two important regions in Aspergillus nidulans transcriptional activator MetR. Fungal Genet Biol 48:104–112

    Article  CAS  Google Scholar 

  • Fu J, Wu J, Jiang J, Wang Z, Ma Z (2013) Cystathionine gamma-synthase is essential for methionine synthesis in Fusarium graminearum. Fungal Biol 117:13–21

    Article  CAS  Google Scholar 

  • Grynberg M, Topczewski J, Godzik A, Paszewski A (2000) The Aspergillus nidulans cysA gene encodes a novel type of serine O-acetyltransferase which is homologous to homoserine O-acetyltransferases. Microbiology 146:2695–2703

    CAS  Google Scholar 

  • Han YK, Lee T, Han KH, Yun SH, Lee YW (2004) Functional analysis of the homoserine O-acetyltransferase gene and its identification as a selectable marker in Gibberella zeae. Curr Genet 46:205–212

    Article  CAS  Google Scholar 

  • Jiang J, Yun Y, Fu J, Shim WB, Ma Z (2011) Involvement of a putative response regulator FgRrg-1 in osmotic stress response, fungicide resistance and virulence in Fusarium graminearum. Mol Plant Pathol 12:425–436

    Article  CAS  Google Scholar 

  • Kacprzak MM, Lewandowska I, Matthews RG, Paszewski A (2003) Transcriptional regulation of methionine synthase by homocysteine and choline in Aspergillus nidulans. Biochem J 376:517–524

    Article  CAS  Google Scholar 

  • Kanetis L, Förster H, Jones CA, Borkovich KA, Adaskaveg JE (2008) Characterization of genetic and biochemical mechanisms of fludioxonil and pyrimethanil resistance in field isolates of Penicillium digitatum. Phytopathology 98:205–214

    Article  CAS  Google Scholar 

  • Kerr DS (1971) O-acetylhomoserine sulfhydrylase from Neurospora: purification and consideration of its function in homocysteine and methionine synthesis. J Biol Chem 246:95–102

    CAS  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  CAS  Google Scholar 

  • Liu XH, Lu JP, Zhang L, Dong B, Min H, Lin FC (2007) Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis. Eukaryot Cell 6:997–1005

    Article  CAS  Google Scholar 

  • Liu X, Yu F, Schnabel G, Wu J, Wang Z, Ma Z (2011) Paralogous cyp51 genes in Fusarium graminearum mediate differential sensitivity to sterol demethylation inhibitors. Fungal Genet Biol 48:113–123

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Marzluf GA (1997) Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev Microbiol 51:73–96

    Article  CAS  Google Scholar 

  • Masner P, Muster P, Schmid J (1994) Possible methionine synthesis inhibition by pyrimidinamine fungicides. Pestic Sci 42:163–166

    Article  CAS  Google Scholar 

  • Mirocha CJ, Kolaczkowski E, Xie W, Yu H, Jelen H (1998) Analysis of deoxynivalenol and its derivatives (batch and single kernel) using gas chromatography/mass spectrometry. J Agric Food Chem 46:1414–1418

    Article  CAS  Google Scholar 

  • Mondal S, Das YB, Chatterjee SP (1996) Methionine production by microorganisms. Folia Microbiol 41:465–472

    Article  CAS  Google Scholar 

  • Morzycka E, Paszewski A (1979) Two pathways of cysteine biosynthesis in Saccharomycopsis lipolytica. FEBS Lett 101:97–100

    Article  CAS  Google Scholar 

  • Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S (2001) Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91:173–180

    Article  CAS  Google Scholar 

  • Nazi I, Scott A, Sham A, Rossi L, Williamson PR, Kronstad JW, Wright GD (2007) Role of homoserine transacetylase as a new target for antifungal agents. Antimicrob Agents Chemoter 51:1731–1736

    Article  CAS  Google Scholar 

  • Pascon RC, Ganous TM, Kingsbury JM, Cox GM, McCusker JH (2004) Cryptococcus neoformans methionine synthase: expression analysis and requirement for virulence. Microbiology 150:3013–3023

    Article  CAS  Google Scholar 

  • Paszewski A, Grabski J (1974) Regulation of S-amino acids synthesis in Aspergillus nidulans. Role of cysteine and/or homocysteine as regulatory effectors. Mol Gen Genet 132:307–320

    Article  CAS  Google Scholar 

  • Paszewski A, Grabski J (1975) Enzymatic lesions in methionine mutants of Aspergillus nidulans: role and regulation of an alternative pathway for cysteine and methionine biosynthesis. J Bacteriol 124:893–904

    CAS  Google Scholar 

  • Paszewski A, Natorff R, Piotrowska M, Brzywczy J, Sieńko M, Grynberg M, Pizzinini E, Turner G (2000) Regulation of sulfur amino acid biosynthesis in Aspergillus nidulans: physiological and genetical aspects. In: Brunold C, Rennenberg H, De Kok LJ, Stulen I, Davidian JC (eds) Sulfur nutrition and sulfur assimilation in higher plants. Paul Haupt Publishers, Bern, pp 93–105

    Google Scholar 

  • Pieniążek NJ, Bal J, Balbin E, Stępień PP (1974) An Aspergillus nidulans mutant lacking serine transacetylase: evidence for two pathways of cysteine biosynthesis. Mol Gen Genet 132:363–366

    Article  Google Scholar 

  • Ravanel S, Gakière B, Job D, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95:7805–7812

    Article  CAS  Google Scholar 

  • Roje S (2006) S-adenosyl-l-methionine: beyond the universal methyl group donor. Phytochemistry 67:1686–1698

    Article  CAS  Google Scholar 

  • Seong K, Hou Z, Tracy M, Kistler HC, Xu JR (2005) Random insertional mutagenesis identifies genes associated with virulence in the wheat scab fungus Fusarium graminearum. Phytopathology 95:744–750

    Article  CAS  Google Scholar 

  • Sieńko M, Natorff R, Owczarek S, Olewiecki I, Paszewski A (2009) Aspergillus nidulans genes encoding reverse transsulfuration enzymes belong to homocysteine regulon. Curr Genet 55:561–570

    Article  Google Scholar 

  • Suliman HS, Appling DR, Robertus JD (2007) The gene for cobalamin-independent methionine synthase is essential in Candida albicans: a potential antifungal target. Arch Biochem Biophys 467:218–226

    Article  CAS  Google Scholar 

  • Takagi H, Yoshioka K, Awano N, Nakamori S, Ono BI (2003) Role of Saccharomyces cerevisiae serine O-acetyltransferase in cysteine biosynthesis. FEMS Microbiol Lett 218:291–297

    Article  CAS  Google Scholar 

  • Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532

    CAS  Google Scholar 

  • Treichler HJ, Liersch M, Nüesch J (1978) Genetics and biochemistry of cephalosporin biosynthesis. In: Hütter R, Leisinger T, Nüesch J, Wehrli W (eds) Antibiotics and other secondary metabolites. Academic Press, London, pp 177–199

    Google Scholar 

  • Wróbel M, Lewandowska I, Bronowicka-Adamska P, Paszewski A (2009) The level of sulfane sulfur in the fungus Aspergillus nidulans wild type and mutant strains. Amino Acids 37:565–571

    Article  Google Scholar 

  • Yamagata S (1989) Roles of O-acetyl-L-homoserine sulfhydrylases in microorganisms. Biochimie 71:1125–1143

    Article  CAS  Google Scholar 

  • Zeppa S, Marchionni C, Saltarelli R, Guidi C, Ceccaroli P, Pierleoni R, Zambonelli A, Stocchi V (2010) Sulfate metabolism in Tuber borchii: characterization of a putative sulfate transporter and the homocysteine synthase genes. Curr Genet 56:109–119

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the 973 Project (2013CB127802), National Science Foundation (31170135), and the Fundamental Research Funds for the Central Universities to Dr. Yin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanni Yin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11274_2013_1544_MOESM1_ESM.tif

Fig. S1 Virulence of the wild-type progenitor PH-1, FgSAT deletion mutants ∆FgSAT-1, -2 and -18 on wheat heads. Wheat heads were point inoculated with conidial suspension of each strain, and infected wheat heads were examined 15 days after inoculation. (TIFF 2610 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, J., Zhang, X., Chen, X. et al. Serine O-acetyltransferase is important, but not essential for cysteine–methionine synthesis in Fusarium graminearum . World J Microbiol Biotechnol 30, 1219–1228 (2014). https://doi.org/10.1007/s11274-013-1544-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1544-5

Keywords

Navigation