Skip to main content

Advertisement

Log in

Comparative biochemical analysis during the anaerobic digestion of lignocellulosic biomass from six morphological parts of Williams Cavendish banana (Triploid Musa AAA group) plants

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We studied banana lignocellulosic biomass (BALICEBIOM) that is abandoned after fruit harvesting, and assessed its biochemical methane potential, because of its potential as an energy source. We monitored biogas production from six morphological parts (MPs) of the “Williams Cavendish” banana cultivar using a modified operating procedure (KOP) using KOH. Volatile fatty acid (VFA) production was measured using high performance liquid chromatography. The bulbs, leaf sheaths, petioles–midribs, leaf blades, rachis stems, and floral stalks gave total biogas production of 256, 205, 198, 126, 253, and 221 ml g−1 dry matter, respectively, and total biomethane production of 150, 141, 127, 98, 162, and 144 ml g−1, respectively. The biogas production rates and yields depended on the biochemical composition of the BALICEBIOM and the ability of anaerobic microbes to access fermentable substrates. There were no significant differences between the biogas analysis results produced using KOP and gas chromatography. Acetate was the major VFA in all the MP sample culture media. The bioconversion yields for each MP were below 50 %, showing that these substrates were not fully biodegraded after 188 days. The estimated electricity that could be produced from biogas combustion after fermenting all of the BALICEBIOM produced annually by the Cameroon Development Corporation–Del Monte plantations for 188 days is approximately 10.5 × 106 kW h (which would be worth 0.80–1.58 million euros in the current market). This bioenergy could serve the requirements of about 42,000 people in the region, although CH4 productivity could be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BMP:

Biochemical methane potential

BALICEBIOM:

Banana lignocellulosic biomass

C/N:

Carbon/nitrogen ratio

CDC:

Cameroon Development Corporation

DM:

Dry matter

DT:

Digestion time

FCFA:

Franc des Colonies Françaises d’Afrique

GE:

Glucose equivalent

GC:

Gas chromatography

HPLC:

High performance liquid chromatography

KOP:

Operating procedure using KOH

MP:

Morphological part

MV:

Market value

SD:

Standard deviation

TOC:

Total organic carbon

TBP:

Total biogas production

TMP:

Total methane production

VFA:

Volatile fatty acid

References

  • AES-SONEL (2013) Société Nationale d’Électricité du Cameroun. http://aessoneltoday.com/decision-arsel-fixant-les-nouveaux-tarifs-delectricite.html. Accessed 10 Jan 2013

  • Allen SE, Grimshaw HM, Parkinson JA, Quarmby C (1974) Chemical analysis of ecological materials. Blackwell, New York Scientific Publications

    Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemicalpathway. Energ Convers Manage 52:858–875

    Article  CAS  Google Scholar 

  • Barakat A, Monlau F, Steyer JP, Carrere H (2012) Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production. Bioresour Technol 104:90–99

    Article  CAS  Google Scholar 

  • CEAEQ (2011) Centre d’expertise en analyse environnementale du Québec. Détermination du carbone organique total dans les solides. http://www.ceaeq.gouv.qc.ca/methodes/pdf/MA405C11.pdf. Accessed 26 Jan 2012

  • Chanakya HN, Sreesha M (2012) Anaerobic retting of banana and arecanut wastes in a plug flow digester for recovery of fiber, biogas and compost. Energ Sust Dev 16:231–235

    Article  CAS  Google Scholar 

  • Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes. Renew Sust Energ Rev 16:1462–1476

    Article  CAS  Google Scholar 

  • Cheng CL, Lo YC, Lee KS, Lee DJ, Lin CY, Chang JS (2011) Biohydrogen production from lignocellulosic feedstock. Bioresour Technol 102:8514–8523

    Article  CAS  Google Scholar 

  • Chernicharo DLCA (2007) Biological wastewater treatment series. Minas Gerais, Brazil IWA publishing, Anaérobic reactors

    Google Scholar 

  • CIA (2013) Central Intelligence Agency. https://www.cia.gov/library/publications/the-world-factbook/geos/cm.html. Accessed 10 Jan 2013

  • Conklin-Brittain NL, Dierenfeld ES, Wrangham RH, Norconk M, Silver SC (1999) Chemical protein analysis: a comparison of Kjeldahl crude protein and total ninhydrin protein from wild, tropical vegetation. J Chem Ecol 24:2601–2622

    Article  Google Scholar 

  • De Bok FAM, Plugge CM, Stams AJM (2004) Interspecies electron transfer in methanogenic propionate degrading consortia. Water Resour 38:1368–1375

    Google Scholar 

  • Deublein D, Steinhauser A (2008) Biogas from waste and renewable sources. Wiley-Vch Verlag GmbH and Co, Weinheim

  • Didderen I, Destain J, Thonart P (2008) Le bioéthanol de seconde génération: la production du bioéthanol à partir de la biomasse lignocellulosique. Les Presses agronomiques de Gembloux, Belgique

    Google Scholar 

  • FAO (2010) FAOSTAT statistics data base. Agriculture. FAO, Rome

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  CAS  Google Scholar 

  • Gerardi MH (2003) The microbiology of anaerobic digesters. Wiley, New Jersey

    Book  Google Scholar 

  • Gil MV, Oulego P, Casal MD, Pevida C, Pis JJ, Rubiera F (2010) Mechanical durability and combustion characteristics of pellets from biomass blends. Bioresour Technol 101:8859–8867

    Article  CAS  Google Scholar 

  • Giroux M, Audesse P (2004) Comparaison de deux méthodes de détermination des teneurs en carbone organique, en azote total et du rapport C/N de divers amendements organiques et engrais de ferme. Agrosol Prod Anim 15:107–110

    Google Scholar 

  • Guo XM, Trably E, Latrille E, Carrère H, Steyer JP (2010) Hydrogen production from agricultural waste by dark fermentation. Int J Hydrogen Energy 35:10660–10673

    Article  CAS  Google Scholar 

  • Hall DO, Rosillo-Calle F (1998) Biomass-other than wood. In: survey of energy resources World energy council, 18th edn. London, pp 227–241

  • Hamilton C, Hiligsmann S, Beckers L, Masset J, Wilmotte A, Thonart P (2010) Optimization of culture conditions for biological hydrogen production by Citrobacter freundii CWBI952 in batch, sequenced-batch and semicontinuous operating mode. Int J Hydrogen Energ 35:1089–1098

    Article  CAS  Google Scholar 

  • Hiligsmann S, Masset J, Hamilton C, Beckers L, Thonart P (2011) Comparative study of biological hydrogen production by pure strains and consortia of facultative and strict anaerobic bacteria. Bioresour Technol 102:3810–3818

    Article  CAS  Google Scholar 

  • Kalia VC, Sonakya V, Raizada N (2000) Anaerobic digestion of banana stem waste. Bioresour Technol 73:191–193

    Article  CAS  Google Scholar 

  • Kamdem I, Tomekpe K, Thonart P (2011) Production potentielle de bioéthanol, de biométhane et de pellets à partir des déchets de biomasse lignocellulosique du bananier (Musa spp.) au Cameroun. Biotechnol Agron Soc Environ 15(3): 461–473 http://popups.ulg.ac.be/Base/personne.php?type=auteur&id=7795. Accessed 03 Sept 2011

  • Lassoudière A (2007) Le bananier et sa culture. Quae, Versailles

    Google Scholar 

  • Lechien V, Rodriguez C, Ongena M, Hiligsmann S, Rulmont A, Thonart P (2006) Physicochemical and biochemical characterization of non-biodegradable cellulose in Miocene gymnosperm wood from the Entre-Sambre-et-Meuse, Southern Belgium. Org Geochem 37:1465–1476

    Article  CAS  Google Scholar 

  • Liu YQ, Liu Y, Tay JH (2004) The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl Microbiol Biotechnol 65:143–148

    Article  CAS  Google Scholar 

  • Masset J, Hiligsmann S, Hamilton C, Beckers L, Franck F, Thonart P (2010) Effect of pH on glucose and starch fermentation in batchand sequenced-batch mode with a recently isolated strain of hydrogen-producing Clostridium butyricum CWBI1009. Int J Hydrogen Energy 35:3371–3378

    Article  CAS  Google Scholar 

  • Mital KM (1996) Biogas systems: principles and applications. New Age International Publishers Limited, New Delhi

    Google Scholar 

  • Ogier JC, Ballerini D, Leygue JP, Rigal L, Pourquié J (1999) Production d’éthanol à partir de biomasse lignocellulosique. Oil Gas Sci Technol 54:67–94

    Article  CAS  Google Scholar 

  • Oliveira L, Cordeiro N, Evtuguin DV, Torres IC, Silvestre AJD (2007) Chemical composition of different morphological parts from “Dwarf Cavendish” banana plant and their potential as non-wood renewable source of natural products. Ind Crops Prod 26:163–172

    Article  Google Scholar 

  • Owen WF, Stuckey DC, JB H Jr, Young LY, McCarty PL (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Resour 13:485–492

    CAS  Google Scholar 

  • Ståhl M, Berghel J (2011) Energy efficient pilot-scale production of wood fuel pellets made from a raw material mix including sawdust and rapeseed cake. Biomass Bioenergy 35:4849–4854

    Article  Google Scholar 

  • Wang YS, Byrd CS, Barlaz MA (1994) Anaerobic biodegradability of cellulose and hemicellulose in excavated refuse samples using a biochemical methane potential assay. J Ind Microbiol 13:147–153

    Article  CAS  Google Scholar 

  • Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99:7928–7940

    Article  CAS  Google Scholar 

  • Yadvika Santosh Sreekrishnan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques. J Bioresour Technol 95:1–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irénée Kamdem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamdem, I., Hiligsmann, S., Vanderghem, C. et al. Comparative biochemical analysis during the anaerobic digestion of lignocellulosic biomass from six morphological parts of Williams Cavendish banana (Triploid Musa AAA group) plants. World J Microbiol Biotechnol 29, 2259–2270 (2013). https://doi.org/10.1007/s11274-013-1392-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1392-3

Keywords

Navigation