Skip to main content

Advertisement

Log in

Comparative biochemical methane potential of some varieties of residual banana biomass and renewable energy potential

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The biochemical methane potential (BMP) of peduncles, bulbs, and peels of three banana varieties (Grande Naine (GN; export dessert banana), Pelipita (PPTA; locally used plantain), and CRBP969 (phytopathogen resistant hybrid-plantain)) was investigated as an assessment of the bioconversion potential of these residues to renewable energy or biorefined chemicals. Biogas production was monitored manometrically for 132 days and its composition was analyzed using gas chromatography. The BMP ranged from 162 to 257 ml_CH4/g_DM for peduncles, from 228 to 304 ml_CH4/g_DM for bulbs, and from 208 to 303 ml_CH4/g_DM for green peels, with methane content of the biogas in the range 56 to 60 %. Bulbs and green peels showed bioconversion yields of 95 % of the chemical oxygen demand (COD). The GN variety was generally more biodigestible than PPTA, which appeared richer in lignocellulosic fibres. The peels biodigestibility reduced with maturation and was already limited to 56 % of the COD at the yellow stage. The energy resource available in the residues of banana production is very significant, increasing by 91 % the energy resource offered by banana crop, which is generally limited to the nutritional value of the fruit pulp. In the study case of the African leading producer of bananas and plantains (Cameroon), the amount of available residues from the sole export variety GN could feed about 4 % of the annual electricity consumed by the country, i.e., a supply of electricity to an additional 9 × 105 people. Such valorization of the residual banana biomass could help banana-producing countries to become less dependent on fossil fuels and less prone to energy shortages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AD:

Anaerobic digestion

BMP:

Biochemical methane potential

CARBAP:

African Research Centre on Bananas and Plantains

CHP:

Combined heat and power plant

CRBP:

Previous name of CARBAP

COD:

Chemical oxygen demand

DM:

Dry matter

FM:

Fresh matter

GC:

Gas chromatography

GN:

Grande Naine

PHP:

Plantations Haut Penja

PPTA:

Pelipita

VS:

Volatile solids

References

  1. Kouassi K.S. (2001). La création variétale par pollinisation manuelle chez les bananiers (Musa spp.). Mémoire DEA. Université d’Abidjan-Cocody, Côte d’Ivoire, 50p.

  2. Stover RH, Simmonds NW (1987) Classification of banana cultivars. In: Stover RH, Simmonds NW (eds) Bananas, 3rd edn. Wiley, New York, pp. 97–103

    Google Scholar 

  3. Robinso JC (1996) Distribution and importance; taxonomic classification, cultivars and breeding. In: Robinson JC (ed) Banana and plantains. CAB International, Wallingford, pp. 1–33

    Google Scholar 

  4. FAO (2010) FAOSTAT statistics data base. Agriculture. FAO, Rome.

  5. Kamdem I, Tomekpe K, Thonart P (2011) Production potentielle de bioéthanol, de biométhane et de pellets a` partir des de’chets de biomasse lignocellulosique du bananier (Musa spp.) au Cameroun. Biotechnol. Agron. Soc. Environment 15(3):461–473

    Google Scholar 

  6. FAO (2001). FAOSTAT statistics database, Agriculture, Rome, Italy.

  7. FAO (2002). FAOSTAT statistics data base, Agriculture, Rome, Italy.

  8. FAO (2012) Bananas production in Cameroon. FAOSTAT statistics database. Accessed 12 July 2016.

  9. Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99:7928–7940

    Article  Google Scholar 

  10. Batstone DJ, Jensen PD (2011) Anaerobic processes. In: Wilderer P (ed) Treatise on water science. Elsevier, Oxford, pp. 615–639

    Chapter  Google Scholar 

  11. Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJM (2011) Biomethanation and its potential. Methods Enzymol 494:327–351

    Article  Google Scholar 

  12. Weiland P (2009) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  Google Scholar 

  13. Kalia VC, Sonakya V, Raizada N (2000) Anaerobic digestion of banana stem waste. Bioresour Technol 73:191–193

    Article  Google Scholar 

  14. Chanakya HN, Sreesha M (2012) Anaerobic retting of banana and arecanut wastes in a plug flow digester for recovery of fiber, biogas and compost. Energ Sust Dev 16:231–235

    Article  Google Scholar 

  15. Bardiya N, Somayaji D, Khanna S (1996) Biomethanation of banana peel and pineapple waste. Bioresour Technol 58:73–76

    Article  Google Scholar 

  16. Gunaseelan N (2004) Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass Bioenergy 26:389–399

    Article  Google Scholar 

  17. Clarke WP, Radnidge P, Lai TE, Jensen PD, Hardin MT (2008) Digestion of waste bananas to generate energy in Australia. Waste Manag 28:527–533

    Article  Google Scholar 

  18. Tumutegyereize P, Muranga FI, Kawongolo J, Nabugoomu F (2011) Optimization of biogas production from banana peels: effect of particle size on methane yield. Afr J Biotechnol 10(79):18243–18251

    Article  Google Scholar 

  19. Kalemelawa F, Nishihara E, Endo T, Ahmad Z, Yeasmin R, Tenywa M, Yamamoto S (2012) An evaluation of aerobic and anaerobic composting of banana peels treated with different inoculums for soil nutrient replenishment. Bioresour Technol 126:375–382

    Article  Google Scholar 

  20. Abdul RS, Rasool BM, Khan MB (2013) Anaerobic biodegradability and methane potential of crop residue co-digested with buffalo dung. Mehran Univ Res J Eng Technol 32:0254–7821

    Google Scholar 

  21. Kamdem I, Hiligsmann S, Vanderghem C, Bilik I, Paquot M, Thonart P (2013) Comparative biochemical analysis during the anaerobic digestion of lignocellulosic biomass from six morphological parts of Williams Cavendish banana (Triploid Musa AAA group) plants. World J Microbiol Biotechnol 29:2259–2270

    Article  Google Scholar 

  22. Awedem WF, Achu MBL, Happi ET (2015) Nutritive value of three varieties of banana and plantain blossoms from Cameroon. Greener J Agri Sci 5(2):052–061. doi:10.15580/GJAS.2015.2.012115009

    Google Scholar 

  23. Tiappi DMF, Happi ET, Tchokouassom R, Vanderghem C, Aguedo M, Gillet S, Jacquet N, Danthine S, Magali D, Aurore R (2015) Genotype contribution to the chemical composition of banana rachis and implications for thermo/biochemical conversion. Biomass Conv Bioref. doi:10.1007/S13399-015-0158-6

    Google Scholar 

  24. Clesceri LS, Greenberg AE, Eaton AD (1999) Standard methods for examination of water & wastewater, 20th edn. Am Public Health Assoc, Washington, DC

    Google Scholar 

  25. Wang YS, Byrd CS, Barlaz MA (1994) Anaerobic biodegradability of cellulose and hemicellulose in excavated refuse samples using a biochemical methane potential assay. J Ind Microbiol 13:147–153

    Article  Google Scholar 

  26. Cordeiro N, Oliveira L, Evtuguin DV, Torres IC, Silvestre AJD (2007) Chemical composition of different morphological parts from ‘Dwarf Cavendish’ banana plant and their potential as a non-wood renewable source of natural products. Ind Crop Prod 26(2):163–172. doi:10.1016/j.indcrop.2007.03.002

    Article  Google Scholar 

  27. Mohapatra D, Sabyasachi M, Namrata S (2010) Banana and its by-products utilization: an overview. J Sci Ind Res 69:323–329

    Google Scholar 

  28. Hills DJ, Nikano K (1984) Effect of particle size on anaerobic digestion of tomato solid waste. Agric Wastes 10:285–295

    Article  Google Scholar 

  29. Khanna S. (1992). Methanogenesis from agricultural byproducts. Final report submitted to MNES Govt. of India, New Delhi. No. 5/2/23-89-BP.

  30. Happi ET, Andrianaivo RH, Wathelet B, Tchango TJ, Paquot M (2007) Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chem 103:590–600

    Article  Google Scholar 

  31. Ngoh NG, Kendine VC, Womeni HM (2014) Physicochemical and mineral composition of dessert banana peduncle juice during conservation at ambient temperature. Greener J Agri Sci 4(8):326–337. doi:10.15580/GJAS.2014.8.072014308

    Google Scholar 

  32. Ilori MO, Adebusoye A, Lawal AK, Awotiwon OA (2007) Production of biogas from banana and plantain peels. Adv Environ Biol 1(1):33–38

    Google Scholar 

  33. Uhuegbu CC, Onuorah LO (2014) Production of biogas from plantain peels. Res J Eng Appl Sci 3(2):145–150

    Google Scholar 

  34. Cordeiro N, Oliveira L, Evtuguin D, Silvestre AJD (2009) Structural characterization of stalk lignin from banana plant. Ind Crop Prod 29(1):86–95. doi:10.1016/j.indcrop.2008.04.012

    Article  Google Scholar 

  35. Lassoudière A. (2007) Le bananier et sa culture. Publisher Quae, Versailles, France. ISBN: 978-2-7592-0046-7. pp. 383

  36. CIA (2015). Central Intelligence Agency. https://www.cia.gov/library/publications/the-world-factbook/geos/cm.html. Accessed 20 April 2015.

  37. United States Department of Agriculture. USDA Food Composition Databases. https://ndb.nal.usda.gov/ndb/. Accessed 10 June 2016.

  38. Wandji FDY (2007). Le Cameroun et la question énergétique. Éditions l’Harmattan. Paris, France.

  39. Mayer F, Gerin PA, Noo A, Foucart G, Flammang J, Lemaigre S, Sinnaeve G, Dardenne P, Delfosse P (2014) Assessment of factors influencing the biomethane yield of maize silages. Bioresour Technol 153:260–226

    Article  Google Scholar 

  40. Assobacam (2015). Association bananière du Cameroun. http://www.assobacam.com/index.php/exportations 2014. Accessed 22 Jan 2015.

  41. Achilles, W., de Baey-Ernsten, H., Frisch, J., Fritzsche, S., Fröba, N., Funk, M., Grimm, E., Hartmann, W., Kloepfer, F., Peters, R., Sauer, N., Schwab, M., Siegel, F., Weiershaüser, L., Witzel, E., 2002. Betriebsplanung Landwirtschaft 2002/2003, Datensammlung, Kuratorium für Technik und Bauwesen in der Landwirtschaft—KTBL, 18. Auflage, Darmstadt, ISBN 3-7843-2141-0, p. 379.

  42. Gerin AP, Vliegen F, Jossart J-M (2008) Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresour Technol 99:2620–2627

    Article  Google Scholar 

  43. Nguyena VH, Topnoa S, Balingbing C, Nguyenb VCN, Röder M, Quilty J, Jamieson C, Thornley P, Gummerta M (2016) Generating a positive energy balance from using rice straw for anaerobic digestion. Energy Rep 2:117–122

  44. Fachverband Biogas e.V. (2015) German biogas association. http://www.biogas.org/edcom/webfvb.nsf/id/DE_Branchenzahlen/$file/16-07-28_Biogas_Branchenzahlen-2015_Prognose-2016_engl_final.pdf. Accessed 6 October 2016.

Download references

Acknowledgments

Financial support and scholarship for this study (Project “Programme Interuniversitaire Cible: Valorization of banana residues and contribution to local sustainable development”) were provided by the Commission Universitaire pour le Développement (CUD) and Wallonie-Bruxelles International (WBI) from Belgium. The authors are also grateful to the research staff from the Bioengineering Unit (UCL, Belgium), to the post-harvest technology laboratory, CARBAP-Cameroon, and to the laboratory for Food Science and Metabolism, LabSAM-Cameroon. A great acknowledgment to Thomas Nicolay, Florian Tiappi, Achu Mercy Bih, and Raphaël Tchokouassom for their technical support and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick A. Gerin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wobiwo, F.A., Emaga, T.H., Fokou, E. et al. Comparative biochemical methane potential of some varieties of residual banana biomass and renewable energy potential. Biomass Conv. Bioref. 7, 167–177 (2017). https://doi.org/10.1007/s13399-016-0222-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-016-0222-x

Keywords

Navigation