Skip to main content
Log in

Plant growth promoting bacteria in Brachiaria brizantha

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Brachiaria brizantha is considered one of the preferred fodders among farmers for having high forage yield and large production of root mass. The association of beneficial bacteria with these grasses can be very valuable in the recovery of the pasture areas with nutritional deficiency. With the aim of studying this possibility, we carried out the sampling of soil and roots of B. brizantha in three areas (Nova Odessa-SP, São Carlos-SP and Campo Verde-MT, Brazil). Seventy-two bacterial strains were isolated and used in tests to evaluate their biotechnological potential. Almost all isolates presented at least one positive feature. Sixty-eight isolates produced analogues of indole-3-acetic acid, ten showed nitrogenase activity when subjected to the method of increasing the concentration of total nitrogen (total N) in the culture medium and sixty-five isolates showed nitrogenase activity when subjected to acetylene reduction technique. The partial sequencing of 16S rRNA of these isolates allowed the identification of seven main groups, with the prevalence of those affiliated to the genus Stenotrophomonas (69 %). At the end, this work elected the strains C4 (Pseudomonadaceae) and C7 (Rhodospirillaceae) as promising organisms for the development of inoculants due to their higher nitrogenase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ARA:

Acetylene reduction assay

IAA:

Indole-3-acetic acid

PGPR:

Plant growth-promoting rhizobacteria

LB:

Luria–Bertani

CC:

Combined carbon

References

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of rhizobium and bradyrizobium species as plant growth promoting rhizobacteria on no-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Araújo WL, Lima AOS, Azevedo JL, Marcon J, Sobral JK, Lacava PT (2002) Manual: Isolamento de microrganismos endofíticos. Piracicaba, CALQ, p 86

    Google Scholar 

  • Araújo FF, Guaberto LM, Silva IF (2012) Bioprospection of plant growth promoter rhizobacteria in Brachiaria brizantha. Rev Bras Zootec 41:521–527

    Article  Google Scholar 

  • Bashan Y, Holguin G, Lifshitz R (1993) Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick BR, Thompson JE (eds) Methods in plant molecular biology and biotechnology. CRC Press, Boca Raton, pp 331–345

    Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum–plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Google Scholar 

  • Berg G, Marten P, Ballin G (1996) Stenotrophomonas maltophilia in the rhizosphere of oilseed rape occurrence, characterization and interaction with phytopathogenic fungi. Microbiol Res 151:19–27

    Article  CAS  Google Scholar 

  • Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    CAS  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • Chabot R, Antoun H, Kloepper JW, Beauchamp CJ (1996) Root colonization of Maize and Lettuce by bioluminescent Rhizobium leguminosarum biovar phaseoli. Appl Environ Microbiol 62:2767–2772

    CAS  Google Scholar 

  • Chelius MK, Triplett EW (2000) Immunolocalization of dinitrogenase reductase produced by Klebsiella pneumoniae in association with Zea mays L. Appl Environ Microbiol 66:783–787

    Article  CAS  Google Scholar 

  • Costa KAP, França AFS, Oliveira IP, Monteiro FA, Barrigossi JAF (2005) Produção de massa seca, eficiência e recuperação do nitrogênio e enxofre pelo capim Tanzânia adubado com nitrogênio, potássio e enxofre. Rev Cienc Agrotec 29:598–603

    Article  CAS  Google Scholar 

  • De Estrada Los Santos P, Bustillos-Cristales R, Aballeromellado J (2001) Burkholderia, a genus in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67:2790–2798

    Article  Google Scholar 

  • Döbereiner J, Marriel IE, Nery M (1976) Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol 22:1464–1473

    Article  Google Scholar 

  • Döbereiner J, Baldani JI, Baldani VLD (1995) Como isolar e identificar bactérias diazotróficas de plantas não leguminosas. Brasília, EMBRAPA

    Google Scholar 

  • Engelhard M, Hurek T, Reinhold-Hurek B (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2:131–141

    Article  CAS  Google Scholar 

  • Fernandes MF, Fernandes RPM, Rodrigues LS (2001) Bactérias diazotróficas associadas a coqueiros na região da baixada litorânea em Sergipe. Pesq Agropecu Bras 36:1509–1517

    Google Scholar 

  • Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soil 33:410–415

    Article  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophorect separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    CAS  Google Scholar 

  • Kelemu S, Fory P, Zuleta C, Ricaurte J, Rao I, Lascano C (2011) Detecting bacterial endophytes in tropical grasses of the Brachiaria genus and determining their role in improving plant growth. Afr J Biotechnol 10:965–976

    Google Scholar 

  • Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480

    Article  CAS  Google Scholar 

  • Kuss AV, Kuss VV, Lovato T, Flôres ML (2007) Fixação de nitrogênio e produção de ácido indolacético in vitro por bactérias diazotróficas endofíticas. Pesq Agropecu Bras 42:1459–1465

    Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid-determination of 16 s rRNA sequences for phylogenetic analyses. Proc Natl Acad Sci 82:6955–6959

    Article  CAS  Google Scholar 

  • Liba CM, Ferrara FIS, Manfio GP, Garboggini FF, Albuquerque RC, Pavan C, Ramos PL, Moreira CA, Barbosa HR (2006) Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. J Appl Microbiol 101:1076–1086

    Article  CAS  Google Scholar 

  • Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA (2001) Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 47:110–117

    Article  CAS  Google Scholar 

  • Messiha NAS, Diepeningen AD, Farag NS, Abdallah SA, Janse JD, Bruggen AHC (2007) Stenotrophomonas maltophilia: a new potential biocontrol agent of Ralstonia solanacearum, causal agent of potato brown rot. Eur J Plant Pathol 118:211–225

    Article  Google Scholar 

  • Moreira FMS, Siqueira JO (2006) Microbiologia e bioquímica do solo. Editora UFLA, Lavras

    Google Scholar 

  • Neroni RF (2007) Diversidade de bactérias diazotróficas associadas à Araucaria angustifolia no Estado de São Paulo. Dissertation, Escola Superior de Agronomia “Luiz de Queiróz”

  • Odee DW, Haukka K, Mcinroy SG, Sprent JI, Sutherland JM, Young JPW (2002) Genetic and symbiotic characterization of rhizobia isolated from tree and herbaceous legumes grown in soils from ecologically diverse sites in Kenya. Soil Biol Biochem 34:801–811

    Article  CAS  Google Scholar 

  • Pedraza RO, Ramirez-Mata A, Xiqui ML, Baça BE (2004) Aromatic amino acid aminotransferase activity and indole-3-acetic acid production by associative nitrogen- fixing bacteria. FEMS Microbiol Lett 233:15–21

    Article  CAS  Google Scholar 

  • Pereira PAA, Döbereiner J, Neyra CA (1981) Nitrogen assimilation and dissimilation in five genotypes of Brachiaria spp. Can J Bot 59:1475–1479

    Article  CAS  Google Scholar 

  • Perrine FM, Prayitno J, Weinman JJ, Dazzo FB, Rolfe BG (2001) Rhizobium plasmids are involved in the inhibition of simulation of rice growth and development. Aust J Plant Physiol 28:923–937

    CAS  Google Scholar 

  • Reinhold B, Hurek T, Nieman EG, Fendrik I (1986) Close association of Azospirillum and diazotrofic rods with different root zone of Kallar grass. Appl Environ Microbiol 52:520–526

    CAS  Google Scholar 

  • Reis VM, Reis FB Jr, Quesada DM, Oliveira OCA, Alves BJR, Urquiaga S, Boddey RM (2001) Biological nitrogen fixation associated with tropical pasture grasses. Aust J Plant Physiol 28:837–844

    Google Scholar 

  • Reis FB Jr, Silva MF, Teixeira KRS, Urquiaga S, Reis VM (2004) Identificação de isolados de Azospirillum amazonense associados à Brachiaria spp., em diferentes épocas e condições de cultivo e produção de fitormônio pela bactéria. Rev Bras Cienc Solo 28:103–113

    Google Scholar 

  • Rennie EM (1981) A single medium for the isolation of acetylene-reducing (nitrogen-fixing) bacteria in soils. Can J Microbiol 27:8–14

    Article  CAS  Google Scholar 

  • Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, Lelie D, Dow JM (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7:514–525

    Article  CAS  Google Scholar 

  • Suckstorff I, Berg G (2003) Evidence for dose-dependent effects on plant growth by Stenotrophomonas strains from different origins. J Appl Microbiol 95:656–663

    Article  CAS  Google Scholar 

  • Vasconcellos RLF, Silva MCP, Ribeiro CMR, Cardoso EJBN (2010) Isolation and screening for plant growth-promoting (PGP) actinobacteria from Araucaria angustifolia rhizosphere soil. Sci Agric 67:743–746

    Article  Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    Article  CAS  Google Scholar 

  • Vessey JK (1994) Measurement of nitrogenase activity in legume root nodules: in defense of the acetylene reduction assay. Plant Soil 158:151–162

    Article  CAS  Google Scholar 

  • Werner JC (1994) Adubação de pastagens de Brachiaria spp. In: Simpósio Sobre Manejo Da Pastagem. Piracicaba: FEALQ, p 209–223

  • Wong P, Stenberg NE (1979) Characterization of Azospirillum isolated from nitrogen-fixing roots of haversted sorghum plants. Appl Environ Microbiol 38:1189–1191

    CAS  Google Scholar 

  • Xie CH, Yokota A (2006) Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa. Int J Syst Evol Microbiol 56:889–893

    Article  CAS  Google Scholar 

  • Yasmin F, Othman R, Saad MS, Sijam K (2007) Screening for beneficial properties of rhizobacteria isolated from sweetpotato rhizosphere. Biotechnol 6:49–52

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to the Sustainable Agriculture Foundation (AGRISUS) for a scholarship to the first author and the financial support to the development of the project: 443-08.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mylenne Calciolari Pinheiro Silva or Elke Jurandy Bran Nogueira Cardoso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, M.C.P., Figueiredo, A.F., Andreote, F.D. et al. Plant growth promoting bacteria in Brachiaria brizantha . World J Microbiol Biotechnol 29, 163–171 (2013). https://doi.org/10.1007/s11274-012-1169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1169-0

Keywords

Navigation