Skip to main content

Advertisement

Log in

Isolation and characterization of marine bacteria capable of utilizing phthalate

  • Short Communication
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Eleven phthalate-degrading bacterial strains were isolated from seawater collected off the coast of Japan. The isolates were found to be most closely related to the marine bacterial genera Alteromonas, Citreicella, Marinomonas, Marinovum, Pelagibaca, Rhodovulum, Sulfitobacter, Thalassobius, Thalassococcus, Thalassospira, and Tropicibacter. For the first time, members of these genera were shown to be capable of growth on phthalate. The plate assay for visual detection of phthalate dioxygenase activity and PCR detection of a possible gene encoding 4,5-dihydroxyphthalate decarboxylase indicated that phthalate is degraded via 4,5-dihydroxyphthalate to protocatechuate in all the isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  Google Scholar 

  • Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605. doi:10.1016/j.marpolbul.2011.05.030

    Article  CAS  Google Scholar 

  • Buchan A, Collier LS, Neidle EL, Moran MA (2000) Key aromatic-ring-cleaving enzyme, protocatechuate 3, 4-dioxygenase, in the ecologically important marine Roseobacter lineage. Appl Environ Microbiol 66:4662–4672. doi:10.1128/AEM.66.11.4662-4672.2000

    Article  CAS  Google Scholar 

  • Chang HK, Zylstra GJ (1998) Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1. J Bacteriol 180:6529–6537

    CAS  Google Scholar 

  • Giam CS, Chan HS, Neff GS, Atlas EL (1978) Phthalate ester plasticizers: a new class of marine pollutant. Science 199:419–420

    CAS  Google Scholar 

  • Graham PR (1973) Phthalate ester plasticizers—why and how they are used. Environ Health Perspect 3:3–12

    CAS  Google Scholar 

  • Gu JG, Han BP, Duan SS, Zhao ZY, Wang YP (2009) Degradation of the endocrine-disrupting dimethyl phthalate carboxylic ester by Sphingomonas yanoikuyae DOS01 isolated from the South China Sea and the biochemical pathway. Int Biodeter Biodegr 63:450–455. doi:10.1016/j.ibiod.2008.12.004

    Article  CAS  Google Scholar 

  • Harwati TU, Kasai Y, Kodama Y, Susilaningsih D, Watanabe K (2007) Characterization of diverse hydrocarbon-degrading bacteria isolated from Indonesian seawater. Microbes Environ 22:412–415. doi:10.1264/jsme2.22.412

    Article  Google Scholar 

  • Iwaki H, Hasegawa Y, Wang S, Kayser MM, Lau PC (2002) Cloning and characterization of a gene cluster involved in cyclopentanol metabolism in Comamonas sp. strain NCIMB 9872 and biotransformations effected by Escherichia coli-expressed cyclopentanone 1,2-monooxygenase. Appl Environ Microbiol 68:5671–5684. doi:10.1128/AEM.68.11.5671-5684.2002

    Article  CAS  Google Scholar 

  • Maeda R, Nagashima H, Widada J, Iwata K, Omori T (2009) Novel marine carbazole-degrading bacteria. FEMS Microbiol Lett 292:203–209. doi:10.1111/j.1574-6968.2009.01497.x

    Article  CAS  Google Scholar 

  • Mann D (2004) Phthalates in cosmetics. Can Chem News 56:21–22

    Google Scholar 

  • Matsumoto M, Hirata-Koizumi M, Ema M (2008) Potential adverse effects of phthalic acid esters on human health: a review of recent studies on reproduction. Regul Toxicol Pharmacol 50:37–49. doi:10.1016/j.yrtph.2007.09.004

    Article  CAS  Google Scholar 

  • Matsunaga T, Matsumoto M, Maeda Y, Sugiyama H, Sato R, Tanaka T (2009) Characterization of marine microalga, Scenedesmus sp. strain JPCC GA0024 toward biofuel production. Biotechnol Lett 31:1367–1372. doi:10.1007/s10529-009-0029-y

    Article  CAS  Google Scholar 

  • Nomura Y, Harashima S, Oshima Y (1989) A simple method for detection of enzyme activities involved in the initial step of phthalate degradation in microorganisms. J Ferment Bioeng 67:291–296. doi:10.1016/0922-338X(89)90234-1

    Article  CAS  Google Scholar 

  • Nomura Y, Nakagawa M, Ogawa N, Harashima S, Oshima Y (1992) Genes in PHT plasmid encoding the initial degradation pathway of phthalate in Pseudomonas putida. J Ferment Bioeng 74:333–344. doi:10.1016/0922-338X(92)90028-S

    Article  CAS  Google Scholar 

  • Park JM, Jeon M, Lim ES, Um HJ, Kim YC, Min J, Kim YH (2008) Biodegradation of a phthalate plasticizer, di-isononyl phthalate (DINP), by Sphingobium chungbukense. Curr Microbiol 57:515–518. doi:10.1007/s00284-008-9232-7

    Article  CAS  Google Scholar 

  • Peakall DB (1975) Phthalate esters: occurrence and biological effects. Residue Rev 54:1–41

    CAS  Google Scholar 

  • Pujar BG, Ribbons DW (1985) Phthalate metabolism in Pseudomonas fluorescens PHK: purification and properties of 4,5-dihydroxyphthalate decarboxylase. Appl Environ Microbiol 49:374–376

    CAS  Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol (in press). doi: 10.1093/molbev/msr121

  • Thompson RC, Moore CJ, vom Saal FS, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc Lond B Biol Sci 364:2153–2166. doi:10.1098/rstb.2009.0053

    Article  CAS  Google Scholar 

  • Vamsee-Krishna C, Phale PS (2008) Bacterial degradation of phthalate isomers and their esters. Indian J Microbiol 48:19–34. doi:10.1007/s12088-008-0003-8

    Article  CAS  Google Scholar 

  • Vamsee-Krishna C, Mohan Y, Phale PS (2006) Biodegradation of phthalate isomers by Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4. Appl Microbiol Biotechnol 72:1263–1269. doi:10.1007/s00253-006-0413-7

    Article  CAS  Google Scholar 

  • Wang Y, Yin B, Hong Y, Yan Y, Gu JD (2008) Degradation of dimethyl carboxylic phthalate ester by Burkholderia cepacia DA2 isolated from marine sediment of South China Sea. Ecotoxicology 17:845–852. doi:10.1007/s10646-008-0247-4

    Article  CAS  Google Scholar 

  • Yoon JH, Kawano S, Igawa S (2010) Modeling of marine litter drift and beaching in the Japan Sea. Mar Pollut Bull 60:448–463. doi:10.1016/j.marpolbul.2009.09.033

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank for P. Lau for carefully reading the manuscript. This work was financially supported in part by JSPS.KAKENHI (22780077) and by the Kansai University Research Grants: Grant-in-Aid for Encouragement of Scientists 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Iwaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwaki, H., Nishimura, A. & Hasegawa, Y. Isolation and characterization of marine bacteria capable of utilizing phthalate. World J Microbiol Biotechnol 28, 1321–1325 (2012). https://doi.org/10.1007/s11274-011-0925-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0925-x

Keywords

Navigation