Skip to main content
Log in

Biodegradation of Phthalate Isomers by Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4 capable of utilizing phthalate isomers were isolated from the soil using enrichment culture technique. The strain ISP4 metabolizes isophthalate, while PPD and PP4 utilizes all three phthalate isomers (ortho-, iso- and tere-) as the sole carbon source. ISP4 utilizes isophthalate (0.1%) more rapidly (doubling time, 0.9 h) compared to PPD (4.64 h), PP4 (7.91 h) and other reported strains so far. The metabolic pathways in these isolates were initiated by dihydroxylation of phthalate isomers. Phthalate is hydroxylated to 3,4-dihydro-3,4-dihydroxyphthalate and 4,5-dihydro-4,5-dihydroxyphthalate in strains PP4 and PPD, respectively; while terephthalate is hydroxylated to 2-hydro-1,2-dihydroxyterephthalate. All three strains hydroxylate isophthalate to 4-hydro-3,4-dihydroxyisophthalate. The generated dihydroxyphthalates were subsequently metabolized to 3,4-dihydroxybenzoate (3,4-DHB) which was further metabolized by ortho ring-cleavage pathway. PP4 and PPD cells grown on phthalate, isophthalate or terephthalate showed respiration on respective phthalate isomer and the activity of corresponding ring-hydroxylating dioxygenase, suggesting the carbon source specific induction of three different ring-hydroxylating dioxygenases. We report, for the first time, the activity of isophthalate dioxygenase and its reductase component in the cell-free extracts. The enzyme showed maximum activity with reduced nicotinamide adenine dinucleotide (NADH) in the pH range 8–8.5. Cells grown on glucose failed to respire on phthalate isomers and 3,4-DHB and showed significantly low activities of the enzymes suggesting that the enzymes are inducible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Arciero DM, Orville AM, Lipscomb JD (1990) Protocatechuate 4,5-dioxygenase from Pseudomonas testosteroni. Methods Enzymol 188:89–95

    Article  CAS  PubMed  Google Scholar 

  • Basu A, Dixit SS, Phale PS (2003) Metabolism of benzyl alcohol via catechol ortho-pathway in methylnaphthalene-degrading Pseudomonas putida CSV86. Appl Microbiol Biotechnol 62:579–585

    Article  CAS  PubMed  Google Scholar 

  • Batie CJ, LaHaie E, Ballou DP (1987) Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase from Pseudomonas cepacia. J Biol Chem 262:1510–1518

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Choi KY, Kim D, Sul WJ, Chae JC, Zylstra GJ, Kim YM, Kim E (2005) Molecular and biochemical analysis of phthalate and terephthalate degradation by Rhodococcus sp strain DK17. FEMS Microbiol Lett 252:207–213

    Article  CAS  PubMed  Google Scholar 

  • Correll CC, Batie CJ, Ballou DP, Ludwig ML (1992) Phthalate dioxygenase reductase: a modular structure for electron transfer from pyridine nucleotides to [2Fe–2S]. Science 258:1604–1610

    Article  CAS  PubMed  Google Scholar 

  • Dillingham EO, Autian J (1973) Teratogenicity, mutagenicity and cellular toxicity of phthalate esters. Environ Health Perspect 3:81–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton RW (2001) Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J Bacteriol 183:3689–3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujisawa H (1970) Protocatechuate 3,4-dioxygenase (Pseudomonas). Methods Enzymol 17A:526–529

    Article  Google Scholar 

  • Gassner GT, Ballou DP (1995) Preparation and characterization of a truncated form of phthalate dioxygenase reductase that lacks an iron–sulfur domain. Biochemistry 34:13460–13471

    Article  CAS  PubMed  Google Scholar 

  • Gesler RM (1973) Toxicology of di-2-ethylhexyl phthalate and other phthalic acid ester plasticizers. Environ Health Perspect 3:73–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson DT, Subramanian V (1984) Microbial degradation of phthalates. In: Gibson DT (ed) Microbial degradation of organic compounds. Dekker, New York, pp 371–394

    Google Scholar 

  • Harris CA, Henttu P, Parker MG, Sumpter JP (1997) The estrogenic activity of phthalate esters in vitro. Environ Health Perspect 105:802–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (2000) Bergey’s manual of determinative bacteriology, 9th edn. Lippincott Williams and Wilkins, Philadelphia, PA

    Google Scholar 

  • Jaeger RJ, Rubin RJ (1973) Extraction, localization, and metabolism of di-2-ethylhexyl phthalate from PVC plastic medical devices. Environ Health Perspect 3:95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaun-Yu L, Fu-Wei T, Chia-Jung W, Pei-Shan L (2004) Suppression by phthalates of the calcium signaling of human nicotinic acetylcholine receptors in human neuroblastoma SH-SY5Y cells. Toxicology 200:113–121

    Article  Google Scholar 

  • Keyser P, Pujar BG, Eaton RW, Ribbons DW (1976) Biodegradation of the phthalates and their esters by bacteria. Environ Health Perspect 18:159–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch HM, Drexler H, Angerer J (2003) An estimation of the daily intake of di(2-ethylhexyl)phthalate (DEHP) and other phthalates in the general population. Int J Hyg Environ Health 206:77–83

    Article  CAS  PubMed  Google Scholar 

  • Krauskopf LG (1973) Studies on the toxicity of phthalates via ingestion. Environ Health Perspect 3:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama K, Akita K, Naitou C, Yoshida M, Kitamura T (2005) Purification and characterization of an esterase hydrolyzing monoalkyl phthalates from Micrococcus sp. YGJ1. J Biochem 137:27–32

    Article  CAS  PubMed  Google Scholar 

  • Niazi JH, Prasad DT, Karegoudar TB (2001) Initial degradation of dimethylphthalate by esterases from Bacillus species. FEMS Microbiol Lett 196:201–205

    Article  CAS  PubMed  Google Scholar 

  • Nomura Y, Harashima S, Oshima Y (1989) A simple method for detection of enzyme activities involved in the initial step of phthalate degradation in microorganisms. J Ferment Bioeng 67:291–296

    Article  CAS  Google Scholar 

  • Phale PS, Mahajan MC, Vaidyanathan CS (1995) A pathway for biodegradation of 1-naphthoic acid by Pseudomonas maltophilia CSV89. Arch Microbiol 163:42–47

    Article  CAS  PubMed  Google Scholar 

  • Pujar BG, Ribbons DW (1985) Phthalate-metabolism in Pseudomonas fluorescens PHK: Purification and properties of 4,5-dihydroxyphthalate decarboxylase. Appl Environ Microbiol 49:374–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rani M, Prakash D, Sobti RC, Jain RK (1996) Plasmid mediated degradation of o-phthalate and salicylate by a Moraxella sp. Biochem Biophys Res Commun 220:377–381

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbour Laboratory, NY

    Google Scholar 

  • Schlafli HR, Weiss MA, Leisinger T, Cook AM (1994) Terephthalate 1,2-dioxygenase system from Comamonas testosteroni T-2: purification and some properties of the oxygenase component. J Bacteriol 176:6644–6652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigematsu T, Yumihara K, Ueda Y, Morimura S, Kida K (2003) Purification and gene cloning of the oxygenase component of the terephthalate 1,2-dioxygenase system from Delftia tsuruhatensis strain T7. FEMS Microbiol Lett 220:255–260

    Article  CAS  PubMed  Google Scholar 

  • Swetha VP, Phale PS (2005) Metabolism of carbaryl via 1,2-dihydroxy naphthalene by soil isolates Pseudomonas sp. strains C4, C5 and C6. Appl Environ Microbiol 71:5951–5956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarasev M, Ballou DP (2005) Chemistry of the catalytic conversion of phthalate into its cis-dihydrodiol during the reaction of oxygen with the reduced form of phthalate dioxygenase. Biochemistry 44:6197–6207

    Article  CAS  PubMed  Google Scholar 

  • Vega D, Bastide J (2003) Dimethylphthalate hydrolysis by specific microbial esterase. Chemosphere 51:663–668

    Article  CAS  PubMed  Google Scholar 

  • Wang YZ, Zhou Y, Zylstra GJ (1995) Molecular analysis of isophthalate and terephthalate degradation by Comamonas testosteroni YZW-D. Environ Health Perspect 103:9–12

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research grant from the Department of Biotechnology, Govt. of India to PP and CSIR-Junior research fellowship to CVK is gratefully acknowledged. Thanks to Dr. Shouche Y, NCCS, India for the 16S rRNA sequencing and Mr. Prabin K Majhi for constructive discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Phale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vamsee-Krishna, C., Mohan, Y. & Phale, P.S. Biodegradation of Phthalate Isomers by Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4. Appl Microbiol Biotechnol 72, 1263–1269 (2006). https://doi.org/10.1007/s00253-006-0413-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0413-7

Keywords

Navigation