Skip to main content
Log in

Physiological and antioxidant response by Beauveria bassiana Bals (Vuill.) to different oxygen concentrations

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of three levels of oxygen (normal atmosphere (21% O2), low oxygen (16% O2) and enriched oxygen (26% O2)) on the production and germination of conidia by Beauveria bassiana was evaluated using rice as a substrate. The maximum yield of conidia was achieved under hypoxia (16% O2) after 8 days of culture (1.51 × 109 conidia per gram of initial dry substrate), representing an increase of 32% compared to the normal atmosphere. However, germination was reduced by at least 27% due to atmospheric modifications. Comparison of antioxidant enzyme activity (superoxide dismutases and catalases) with the oxidation profiles of biomolecules (proteins and lipids) showed that a decrease in catalase activity in the final days of culture coincided with an increase in the amount of oxidized lipids, showing that oxidative stress was a consequence of pulses of different concentrations of O2. This is the first study describing oxidative stress induction by atmospheric modification, with practical implications for conidia production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrashev RI, Pashova SB, Stefanova LN, Vassilev SV, Dolashka-Angelova PA, Angelova MB (2008) Heat-shock-induced oxidative stress and antioxidant response in Aspergillus niger 26. Can J Microbiol 54:977–983

    Article  CAS  Google Scholar 

  • Aguirre J, Ríos-Momberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13(3):111–118

    Article  CAS  Google Scholar 

  • Angelova MB, Pashova SB, Spasova BK, Vassilev SV, Slokoska LS (2005) Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat. Mycol Res 109(2):150–158

    Article  CAS  Google Scholar 

  • Belozerskaya TA, Gessler NN (2006) Oxidative stress and differentiation in Neurospora crassa. Microbiology 75:427–431

    Article  CAS  Google Scholar 

  • Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen redicals. J Biol Chem 276:24261–24267

    Article  CAS  Google Scholar 

  • Cash TP, Pan Y, Simon MC (2007) Reactive oxygen species and cellular oxygen sensing. Free Radic Biol Med 43(9):1219–1225

    Article  CAS  Google Scholar 

  • Cortés-Rojo C, Calderón-Cortés E, Clemente-Guerrero M, Estrada-Villagómez M, Manzo-Avalos S, Mejía-Zepeda M, Boldogh I, Saavedra-Molina A (2009) Elucidation of the effects of lipoperoxidation on the mitochondrial electron transport chain using yeast mitochondria with manipulated fatty acid content. J Bioenerg Biomembr 41:15–28

    Article  Google Scholar 

  • Draper HH, Squires EJ, Mahmoodi H, Wu J, Agarwal S, Hadley M (1993) A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Radic Biol Med 15:353–363

    Article  CAS  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  Google Scholar 

  • Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Biol 201:1203–1209

    CAS  Google Scholar 

  • Glare TR (2004) Biotechnological potential of entomopathogenic fungi. In: Arora DK (ed) Fungal biotechnology in agricultural, food and environmental applications. Marcel Dekker Inc, New York, pp 79–90

    Google Scholar 

  • Gocheva YG, Tosi S, Krumova ET, Slokoska LS, Miteva JG, Vassilev SV, Angelova MB (2009) Temperature downshift induces antioxidant response in fungi isolated from Antarctica. Extremophiles 13:273–281

    Article  Google Scholar 

  • Grzelak A, Macierzynska E, Bartosz G (2006) Accumulation of oxidative damage during replicative aging of the yeast Saccharomyces cerevisiae. Exp Gerontol 41:813–818

    Article  CAS  Google Scholar 

  • Hansberg W, Aguirre J (1990) Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. J Theor Biol 142:201–221

    Article  CAS  Google Scholar 

  • Ibrahim L, Butt TM, Jenkinson P (2002) Effect of artificial culture media on germination, growth, virulence and surface properties of the entomopathogenic hyphomycete Metarhizium anisopliae. Mycol Res 106(6):705–715

    Article  Google Scholar 

  • Issaly N, Chauveau H, Aglevor F, Fargues J, Durand A (2005) Influence of nutrient, pH and dissolved oxygen on the production of Metarhizium flavoviride Mf189 blastospores in submerged batch culture. Process Biochem 40:1425–1431

    Article  CAS  Google Scholar 

  • Kang SW, Lee SH, Yoon CS, Kim SW (2005) Conidia production by Beauveria bassiana (for the biocontrol of a diamondback moth) during solid-state fermentation in a packed-bed bioreactor. Biotechnol Lett 27:135–139

    Article  CAS  Google Scholar 

  • Kawasaki L, Aguirre J (2001) Multiple catalase genes are differentially regulated in Aspergillus nidulans. J Bacteriol 183(4):1434–1440

    Article  CAS  Google Scholar 

  • Li L, Pischetsrieder M, St Leger RJ, Wang C (2008) Associated links among mtDNA glycation, oxidative stress and colony sectorization in Metarhizium anisopliae. Fungal Genet Biol 45:1300–1306

    Article  CAS  Google Scholar 

  • Lledías F, Rangel P, Hansberg W (1998) Oxidation of catalase by singlet oxygen. J Biol Chem 273:10630–10637

    Article  Google Scholar 

  • Miller CD, Rangel D, Braga GUL, Flint S, Kwon SI, Messias CL, Roberts DW, Anderson AJ (2004) Enzyme activities associated with oxidative stress in Metarhizium anisopliae during germination, mycelial growth, and conidiation and in response to near-UV irradiation. Can J Microbiol 50:41–49

    Article  CAS  Google Scholar 

  • Nair V, Turner GA (1984) The thiobarbituric acid test for lipid peroxidation: structure of the adduct with malondialdehyde. Lipids 19:804–805

    Article  CAS  Google Scholar 

  • Neves PJ, Alves SB (2000) Selection of Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch.) Sorok. strains for control of Cornitermes cumulans (Kollar). Braz Arch Biol Techn 43:373–378

    Article  Google Scholar 

  • Nuñez-Gaona O, Saucedo-Castañeda G, Alatorre-Rosas R, Loera O (2010) Effect of moisture content and inoculum on growth and conidia production by Beauveria bassiana on wheat bran. Braz Arch Biol Techn 53:771–777

    Article  Google Scholar 

  • Outten CE, Falk RL, Culotta C (2005) Cellular factors required for protection from hyperoxia toxicity in Saccharomyces cerevisiae. Biochem J 388:93–101

    Article  CAS  Google Scholar 

  • Passi S, Nazzaro-Porro M, Fanelli C, Fabbri AA, Fasella P (1984) Role of lipoperoxidation in aflatoxin production. Appl Microbiol Biotechnol 19:186–190

    Article  CAS  Google Scholar 

  • Reverberi M, Punelli F, Scarpari M, Camera E, Zjalic S, Ricelli A, Fanelli C, Fabbri AA (2010) Lipoperoxidation affects ochratoxin A biosynthesis in Aspergillus ochraceus and its interaction with wheat seeds. Appl Microbiol Biotechnol 85:1935–1946

    Article  CAS  Google Scholar 

  • Samuels KDZ, Heale JB, Llewellyn M (1989) Characteristics relating to the pathogenicity of Metarhizium anisopliae toward Nilaparvata lugens. J Invertebr Pathol 53:25–31

    Article  Google Scholar 

  • Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648

    Article  CAS  Google Scholar 

  • Tlecutil-Beristain S, Viniegra-González G, Díaz-Godínez G, Loera O (2010) Medium selection and effect of higher oxygen concentration pulses on Metarhizium anisopliae var. lepidiotum conidial production and quality. Mycopahologia 169:387–394

    Article  Google Scholar 

  • Whipps JM, Lumsden RD (2001) Commercial use of fungi as plant disease biological control agents: status and prospects. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CABI Publishing, UK, pp 9–22

    Chapter  Google Scholar 

  • Wraight SP, Inglis GD, Goettel MS (2007) Fungi. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Springer, The Netherlands, pp 223–248

    Chapter  Google Scholar 

  • Ye SD, Ying SH, Chen C, Feng MG (2006) New solid-state fermentation chamber for bulk production of aerial conidia of fungal biocontrol agents on rice. Biotechnol Lett 28:799–804

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Garza-López, P. M. (Reg. No. 203464) thanks the Mexican National Council for Science and Technology (CONACyT) for the scholarship. This study was financed by the Universidad Autónoma Metropolitana-Iztapalapa and Red PROMEP-Mexico. The authors wish to thank Dr. Wilhelm Hansberg and Dr. Pablo Rangel for their technical assistance in the measurement of catalase activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octavio Loera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garza-López, P.M., Konigsberg, M., Gómez-Quiroz, L.E. et al. Physiological and antioxidant response by Beauveria bassiana Bals (Vuill.) to different oxygen concentrations. World J Microbiol Biotechnol 28, 353–359 (2012). https://doi.org/10.1007/s11274-011-0827-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0827-y

Keywords

Navigation