Skip to main content
Log in

Sensitivity of Haloarchaea to eubacterial pigments produced by Pseudomonas aeruginosa SB1

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa SB1 was isolated from conventional well water. It produced an extracellular fluorescent bright green pigment which diffused into the growth medium. The purified pigment showed absorption maxima of 690, 370, 312 nm and was identified as pyocyanine, a known inhibitor of eubacterial and eukaryotic growth. The effect of this pigment when tested on orange-red pigmented halophilic archaeal isolates showed remarkable inhibitory activity and resulted in total growth inhibition at 4.67 mg/ml pyocyanine in 24 h. The present work is the first report on eubacterial Pseudomonas aeruginosa SB1 showing anti-Haloarchaeal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller M, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  • Bailey DG, Birbir M (1993) A study of the extremely halophilic microorganisms found on commercially brine-cured cattle hides. J Am Leather Chem Assoc 88:285–293

    Google Scholar 

  • Baron SS, Rowe JJ (1981) Antibiotic action of pyocyanin. Antimicrob Agents Chemother 20:814–820

    CAS  Google Scholar 

  • Birbir M, Ilgaz A (1996) Isolation and identification of bacteria adversely affecting hide and leather quality. J Soc Leather Technol Chem 80:147–153

    CAS  Google Scholar 

  • Braganca JM, Furtado I (2009) Isolation and characterization of Haloarchaea from low-salinity coastal sediments and waters of Goa. Curr sci 96:1182–1184

    CAS  Google Scholar 

  • Chmura NW, Pelczar MJ (1958) Enhancement of Pseudomonad pigment production by Serratia marcescens. J Bacteriol 77:518–519

    Google Scholar 

  • Dakhama A, Lavoie MC, Noiie J (1989) Stimulatory and inhibitory effect of Pseudomonas on the growth of algae. Can Tech Rep Fish Aquat Sci 0(1714):46–51

    Google Scholar 

  • Dakhama A, Noue dela J, Lavoie MC (1992) Isolation and identification of antialgal substance produced by Pseudomonas aeruginosa. J Appl Phycol 5:291–306

    Google Scholar 

  • Daly JA, Boshard R, Matsen JM (1984) Differential primary plating medium for enhancement of pigment production by Pseudomonas aeruginosa. J Clin microbiol 19:742–743

    CAS  Google Scholar 

  • Davison J (1986) Plant beneficial bacteria. Biotechnol 6:282–286

    Article  Google Scholar 

  • Defago G, Hass D (1990) Pseudomonas as antagonist of soil borne plant pathogens: Mode of action and Genetic analysis. Soil Biochem 6:249–291

    CAS  Google Scholar 

  • Dwivedi D, Johri BN (2003) Antifungals from fluorescent Pseudomonas: Biosynthesis and regulations. Curr Sci 85:1693–1703

    CAS  Google Scholar 

  • Ficker M, Krastel K, Orlicky S, Edwards E (1999) Molecular characterization of a toluene-degrading methanogenic consortium. Appl Environ Microbiol 65:5576–5585

    CAS  Google Scholar 

  • Gobbetti M, Corsetti A, Smacchi E, Rossi J (1997) Purification and characterization of a protenaceous compound from Pseudomonas fluorescens ATCC 948 with inhibitory activity against some Gram-positive and Gram-negative bacteria of dairy interest. Lait 77:267–278

    Article  CAS  Google Scholar 

  • Graikoski JT (1973) Microbiology of cured and fermented fish. In: Chichester CO, Graham HD (eds) Development in food microbiological safety of fishery products. Academic Press, New York

    Google Scholar 

  • Grant WD, Larsen H (1989) Extremely halophilic archebacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams & Wilkins, Baltimore, pp 2216–2233

    Google Scholar 

  • Hassan HM, Fridovich I (1980) Mechanism of the antibiotic action of pyocyanine. J Bacteriol 141:156–163

    CAS  Google Scholar 

  • Javor BJ (1989) Hypersaline environments: microbiology and biogeochemistry. Springer-verlag, Berlin

    Google Scholar 

  • Kushner DJ, Kamekura M (1988) Physiology of halophilic eubacteria. In: Rodriguez-Valera F (ed) Halophilic bacteria, vol 1. CRC press inc, Boca raton, FL, pp 109–140

    Google Scholar 

  • Laursen JB, Nielsen J (2004) Phenazine natural products: Biosynthesis, Synthatic analogues and biological activity. Chem Rev 104:1663–1685

    Article  CAS  Google Scholar 

  • Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp. Biosynthesis and regulation. Annu Rev Phytapathol 44:417–445

    Article  CAS  Google Scholar 

  • Mazzola M, Cook RJ, Thomashow LS, Weller DM, Piersom LS III (1992) Contribution of Phenazine antibiotic biosynthesis to the ecological competence of Fluorescent pseudomonas in soil habitats. Appl Environ Microbiol 8:2616–2624

    Google Scholar 

  • Oblinger JL, Kraft AA (2006) Inhibitory effect of Pseudomonas on selected Salmonella and bacteria isolated from poultry. J Food Sci 35:30–32

    Article  Google Scholar 

  • Saha S, Thavasi R, Jayalakshmi S (2008) Phenazine pigments from Pseudomonas aeruginosa and their application as antibacterial agent and food colourants. Res J Microbiol 3:122–128

    Article  CAS  Google Scholar 

  • Shahmohammadi HR, Asgarini E, Terat H, Saito T, Ohyama Y, Gekko K, Yamamoto O, Ide H (1998) Protective role of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA-Damaging agent. J Radiat Res 39:251–262

    Article  CAS  Google Scholar 

  • Sorensen RU, Klinger JD, Cash HA, Chase PA, Dearborn DG (1983) In vitro inhibition of Lymphocytes by Pseudomonas aeruginosa phenazine pigments. Infect Immun 41:321–330

    CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Turner JM, Messenger AJ (1986) Occurrence, Biochemical and physiology of phenazine pigment production. Adv Microb Physiol 27:211–275

    Article  CAS  Google Scholar 

  • Ulmer AJ, Pryjma J, Tarmek Z, Ernst M, Flad HD (1990) Inhibitory and stimulatory effect of Pseudomonas aeruginosa on human T and B lymphocytes and human monocytes. Infect Immun 58:808–815

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by University Grants Commission, India (UGC) Major Research Project No: 34-500/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Braganca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salgaonkar, B.B., Kabilan, M. & Braganca, J.M. Sensitivity of Haloarchaea to eubacterial pigments produced by Pseudomonas aeruginosa SB1. World J Microbiol Biotechnol 27, 799–804 (2011). https://doi.org/10.1007/s11274-010-0519-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-010-0519-z

Keywords

Navigation