Skip to main content
Log in

Gene cloning, expression and characterization of a cold-adapted lipase from a psychrophilic deep-sea bacterium Psychrobacter sp. C18

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A psychrophilic bacterium Psychrobacter sp. C18 previously isolated from the Southern Okinawa Trough deep-sea sediments showed extracellular lipolytic activity towards tributyrin. A genomic DNA library was constructed and screened to obtain the corresponding lipase gene. The sequenced DNA fragment contains an open reading frame of 945 bp, which was denoted as the lipX gene, from which a protein sequence LipX was deduced of 315 amino acid residues with a molecular mass of 35,028 Da. This protein contained the bacterial lipase GNSMG (GxSxG, x represents any amino acid residue) and HG consensus motifs. The recombinant pET28a(+)/lipX gene was overexpressed in heterologous host Escherichia coli BL21 (DE3) cells to overproduce the lipase protein LipXHis with a 6× histidine tag at its C-terminus. Nickel affinity chromatography was used for purification of the expressed recombinant lipase. The maximum lipolytic activity of the purified recombinant lipase was obtained at temperature of 30°C and pH 8.0 with p-nitrophenyl myristate (C14) as a substrate. Thermostability assay indicated that the recombinant LipXHis is a cold-adapted lipase, which was active in 10% methanol, ethanol, acetone and 30% glycol, and inhibited partially by Zn2+, Co2+, Mn2+, Fe3+ and EDTA. Most non-ionic detergents, such as DMSO, Triton X-100, Tween 60 and Tween 80 enhanced the lipase activity but 1% SDS completely inhibited the enzyme activity. Additionally, the highest lipolytic rate of the recombinant LipXHis lipase was achieved when p-nitrophenyl myristate was used as a substrate, among all the p-nitrophenyl esters tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Arpigny JL, Feller G, Gerday C (1993) Cloning, sequence and structural features of a lipase from the antarctic facultative psychrophile Psychrobacter immobilis B10. Biochim Biophys Acta 117:331–333

    Google Scholar 

  • Arpigny JL, Feller G, Gerday C (1995) Corrigendum to “Cloning, sequence and structural features of a lipase from the antarctic facultative psychrophile Psychrobacter immobilis B10”. Biochim Biophys Acta 1263:103

    Google Scholar 

  • Bell PJ, Sunna A, Gibbs MD, Curach NC, Nevalainen H, Bergquist PL (2002) Prospecting for novel lipase genes using PCR. Microbiology 148:2283–2291

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Breuil C, Kushner DJ (1975) Partial purification and characterization of the lipase of a facultatively psychrophilic bacterium (Acinetobacter O16). Can J Microbiol 21:434–441

    Article  CAS  Google Scholar 

  • Chakraborty K, Paulraj R (2009) Purification and biochemical characterization of an extracellular lipase from Pseudomonas fluorescens MTCC 2421. J Agric Food Chem 57:3859–3866

    Article  CAS  Google Scholar 

  • Choo DW, Kurihara T, Suzuki T, Soda K, Esaki N (1998) A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11–1: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 64:486–491

    CAS  Google Scholar 

  • Dang HY, Li TG, Chen MN, Huang GQ (2008) Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl Environ Microbiol 74:52–60

    Article  CAS  Google Scholar 

  • Dang HY, Zhu H, Wang J, Li TG (2009) Extracellular hydrolytic enzyme screening of culturable heterotrophic bacteria from deep-sea sediments of the Southern Okinawa Trough. World J Microbiol Biotechnol 25:71–79

    Article  CAS  Google Scholar 

  • de Pascale D, Cusano AM, Autore F, Parrilli E, di Prisco G, Marino G, Tutino ML (2008) The cold-active Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family. Extremophiles 12:311–323

    Article  CAS  Google Scholar 

  • Fan Z, Yue C, Tang Y, Zhang Y (2009) Cloning, sequence analysis and expression of bacterial lipase-coding DNA fragments from environment in Escherichia coli. Mol Biol Res 36:1515–1519

    Article  CAS  Google Scholar 

  • Feller G, Thiry M, Arpigny JL, Mergeay M, Gerday C (1990) Lipases from psychrotrophic Antarctic bacteria. FEMS Microbiol Lett 66:239–244

    Article  CAS  Google Scholar 

  • Feller G, Thiry M, Arpigny JL, Gerday C (1991) Cloning and expression in Escherichia coli of three lipase-encoding genes from the psychrotrophic antarctic strain Moraxella TA144. Gene 102:111–115

    Article  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP—Phylogeny inference package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235

    CAS  Google Scholar 

  • Gupta A, Khare SK (2009) Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology. Crit Rev Oncogen 29:44–54

    CAS  Google Scholar 

  • Hårdeman F, Sjöling S (2007) Metagenomic approach for the isolation of a novel low-temperature-active lipase from uncultured bacteria of marine sediment. FEMS Microbiol Ecol 59:524–534

    Article  Google Scholar 

  • Henne A, Schmitz RA, Bömeke M, Gottschalk G, Daniel R (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 66:3113–3116

    Article  CAS  Google Scholar 

  • Hu Y, Fu C, Huang Y, Yin Y, Cheng G, Lei F, Lu N, Li J, Ashforth EJ, Zhang L, Zhu B (2010) Novel lipolytic genes from the microbial metagenomic library of the South China Sea marine sediment. FEMS Microbiol Ecol 72:228–237

    Article  CAS  Google Scholar 

  • Jaeger KE, Reetz MT (2000) Directed evolution of enantioselective enzymes for organic chemistry. Curr Opin Chem Biol 4:68–73

    Article  CAS  Google Scholar 

  • Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    Article  CAS  Google Scholar 

  • Joseph B, Ramteke PW, Thomas G, Shrivastava N (2007) Standard review cold-active microbial lipases: a versatile tool for industrial applications. Biotechnol Mol Biol Rev 2:039–048

    Google Scholar 

  • Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: Some hot issues and recent developments. Biotechnol Adv 26:457–470

    Article  CAS  Google Scholar 

  • Kim EY, Oh KH, Lee MH, Kang CH, Oh TK, Yoon JH (2009) Novel cold-adapted alkaline lipase from an intertidal flat metagenome and proposal for a new family of bacterial lipases. Appl Environ Microbiol 75:257–260

    Article  CAS  Google Scholar 

  • Kobayashi T, Koide O, Mori K, Shimamura S, Matsuura T, Miura T, Takaki Y, Morono Y, Nunoura T, Imachi H, Inagaki F, Takai K, Horikoshi K (2008) Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics- and methane-rich sediments off Shimokita Peninsula. Extremophiles 12:519–527

    Article  CAS  Google Scholar 

  • Kulakova L, Galkin A, Nakayama T, Nishino T, Esaki N (2004) Cold-active esterase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of Gly → Pro substitution near the active site on its catalytic activity and stability. Biochim Biophys Acta 1696:59–65

    CAS  Google Scholar 

  • Kumura H, Hirose S, Sakurai H, Mikawa K, Tomita F, Shimazaki K (1998) Molecular cloning and analysis of a lipase gene from Pseudomonas fluorescens No. 33. Biosci Biotechnol Biochem 62:2233–2235

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Lee YP, Chung GH, Rhee JS (1993) Purification and characterization of Pseudomonas fluorescens SIK W1 lipase expressed in Escherichia coli. Biochim Biophys Acta 1169:156–164

    CAS  Google Scholar 

  • Lee HK, Ahn MJ, Kwak SH, Song WH, Jeong BC (2003) Purification and characterization of cold active lipase from psychrotrophic Aeromonas sp. LPB 4. J Microbiol 41:22–27

    CAS  Google Scholar 

  • Lee MH, Lee CH, Oh TK, Song JK, Yoon JH (2006) Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases. Appl Environ Microbiol 72:7406–7409

    Article  CAS  Google Scholar 

  • Lo Giudice A, Michaud L, de Pascale D, De Domenico M, di Prisco G, Fani R, Bruni V (2006) Lipolytic activity of Antarctic cold adapted marine bacteria. J Appl Microbiol 101:1039–1048

    Article  CAS  Google Scholar 

  • Luo Y, Zheng Y, Jiang Z, Ma Y, Wei D (2006) A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification. Appl Microbiol Biotechnol 73:349–355

    Article  CAS  Google Scholar 

  • Madan B, Mishra P (2009) Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli. Appl Microbiol Biotechnol 253:2131–2134

    Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  CAS  Google Scholar 

  • Noureddini H, Gao X, Philkana RS (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 96:769–777

    Article  CAS  Google Scholar 

  • Parawira W (2009) Biotechnological production of biodiesel fuel using biocatalysed transesterification: a review. Crit Rev Biotechnol 29:82–93

    Article  CAS  Google Scholar 

  • Ranganathan SV, Narasimhan SL, Muthukumar K (2008) An overview of enzymatic production of biodiesel. BioresourTechnol 99:3975–3981

    CAS  Google Scholar 

  • Reetz MT (2002) Lipases as practical biocatalysts. Curr Opin Chem Biol 6:145–150

    Article  CAS  Google Scholar 

  • Robles-Medina A, González-Moreno PA, Esteban-Cerdán L, Molina-Grima E (2009) Biocatalysis: towards ever greener biodiesel production. Biotechnol Adv 27:398–408

    Article  CAS  Google Scholar 

  • Ryu HS, Kim HK, Choi WC, Kim MH, Park SY, Han NS, Oh TK, Lee JK (2006) New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl Microbiol Biotechnol 70:321–326

    Article  CAS  Google Scholar 

  • Salameh M, Wiegel J (2007) Lipases from extremophiles and potential for industrial applications. Adv Appl Microbiol 61:253–283

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Schmidt-Dannert C (1999) Recombinant microbial lipases for biotechnological applications. Bioorg Med Chem 7:2123–2130

    Article  CAS  Google Scholar 

  • Verma ML, Azmi W, Kanwar SS (2008) Microbial lipases: at the interface of aqueous and non-aqueous media. A review. Acta Microbiol Immunol Hung 55:265–294

    Article  CAS  Google Scholar 

  • Winkler UK, Stuckmann M (1979) Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138:663–670

    CAS  Google Scholar 

  • Yang X, Lin X, Fan T, Bian J, Huang X (2008) Cloning and expression of lipP, a gene encoding a cold-adapted lipase from Moritella sp. 2–5-10–1. Curr Microbiol 56:194–198

    Article  CAS  Google Scholar 

  • Yumoto I, Hirota K, Sogabe Y, Nodasaka Y, Yokota Y, Hoshino T (2003) Psychrobacter okhotskensis sp. nov, a lipase-producing facultative psychrophile isolated from the coast of the Okhotsk Sea. Int J Syst Evol Microbiol 53:1985–1989

    Article  CAS  Google Scholar 

  • Zeng X, Xiao X, Wang P, Wang F (2004) Screening and characterization of psychrotrophic lipolytic bacteria from deep sea sediments. J Microbiol Biotechnol 14:952–958

    CAS  Google Scholar 

  • Zhang JW, Zeng RY (2008) Molecular cloning, expression of a cold-adapted lipase gene from an Antarctic deep sea psychrotrophic bacterium Pseudomonas sp. 7323. Mar Biotechnol 10:612–621

    Article  CAS  Google Scholar 

  • Zhang J, Lin S, Zeng R (2007) Cloning, expression, characterization of a cold-adapted lipase gene from an antarctic deep-sea psychrotrophic bacterium, Psychrobacter sp. 7195. J Microbiol Biotechnol 17:604–610

    Google Scholar 

Download references

Acknowledgments

The authors thank Hu Zhu for his assistance in the project. This work was supported by China Ocean Mineral Resources R&D Association grants DYXM-115-02-2-20 and DYXM-115-02-2-6, Hi-Tech Research and Development Program of China grant 2007AA091903, China National Natural Science Foundation grant 40576069, Fundamental Research Funds for the Central Universities of China grant 09CX05005A, and Foundation of the State Key Laboratory of Heavy Oil Processing, China University of Petroleum grant SKL2010-02.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lizhong Guo or Hongyue Dang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, R., Guo, L. & Dang, H. Gene cloning, expression and characterization of a cold-adapted lipase from a psychrophilic deep-sea bacterium Psychrobacter sp. C18. World J Microbiol Biotechnol 27, 431–441 (2011). https://doi.org/10.1007/s11274-010-0475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-010-0475-7

Keywords

Navigation