Skip to main content
Log in

Production of Maral (Cervus elaphus sibiricus Severtzov) Recombinant Chymosin in the Prokaryotic Expression System and the Study of the Aggregate of Its Biochemical Properties Relevant for the Cheese-Making Industry

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The paper reports on the production of the maral recombinant chymosin in the Escherichia coli expression system (SHaffle express strain) and the study of its biochemical properties relevant for the cheese-making industry. The highest maral recombinant prochymosin content in inclusion bodies was observed when producer cells were cultured at 25°C for 6 h after the introduction of an inducer, 10 mM isopropyl-β-D-1-thiogalactopyranoside. The biochemical properties of the obtained enzyme were compared with those of bovine and dromedarian recombinant chymosins. It is shown that total proteolytic activity of the maral recombinant chymosin was comparable with that of the bovine enzyme and that it exceeded the activity of the dromedarian enzyme by about 3.8 times. The thermal stability of the recombinant chymosin from maral was found to be 5–10°C higher than that of the chymosins from the cow and dromedary. The patterns of dependence of milk-clotting activity on the pH level and calcium chloride concentration in cow’s milk on the enzyme from maral met the requirements set by the cheese industry. Its high proteolytic activity and thermal stability limits the scope of application of maral recombinant chymosin to the production of cheeses with short ripening and short storage times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Uniacke-Lowe, T. and Fox, P.F., Cheese: Chemistry, Physics and Microbiology, Oxford, UK: Elsevier, Academic, 2017.

    Google Scholar 

  2. Kappeler, S.R., van den Brink, H.(J.)M., Rahbek-Nielsen, H., Farah, Z., Puhan, Z., Hansen, E.B., and Johansen, E., Biochem. Biophys. Res. Commun., 2006, vol. 2, no. 342, pp. 647–654.

    Article  Google Scholar 

  3. Rogelj, I., Perko, B., Francky, A., Penca, V., and Purgenčar, J., J. Dairy Sci., 2001, vol. 84, no. 5, pp. 1020–1026.

    Article  CAS  Google Scholar 

  4. Vallejo, J.A., Ageitos, J.M., Poza, M., and Villa, T.G., J. Dairy Sci., 2012, vol. 95, no. 2, pp. 609–613.

    Article  CAS  Google Scholar 

  5. Vega-Hernandes, M.C., Gomes-Coello, A., Villar, J., and Claverie-Martin, F., J. Biotechnol., 2004, vol. 114, nos. 1–2, pp. 69–79.

    Article  Google Scholar 

  6. Liu, W.-G., Wang, Y.-P., Zhang, Z.-J., Wang, M., Lv, Q.-X., Liu, H.-W., and Lu, M., Protein Expr. Purif., 2017, vol. 135, pp. 78–82.

    Article  CAS  Google Scholar 

  7. Ersöz, F. and İnan, M., Protein Expr. Purif., 2019, vol. 154, pp. 126–133.

    Article  Google Scholar 

  8. Tyagi, A., Kumar, A., Mohanty, A.K., Kaushik, J.K., Grover, S., and Batish, V.K., LWT—Food Sci. Technol., 2017, vol. 84, pp. 733–739.

    Article  CAS  Google Scholar 

  9. Belenkaya, S.V., Rudometov, A.P., Shcherbakov, D.N., Balabova, D.V., Kriger, A.V., Belov, A.N., Koval, A.D., and Elchaninov, V.V., Appl. Biochem. Microbiol., 2018, vol. 54, no. 6, pp. 569–576.

    Article  CAS  Google Scholar 

  10. Wei, C., Tang, B., Zhang, Y., and Yang, K., Biochem. J., 1999, vol. 340, no. 1, pp. 345–351.

    Article  CAS  Google Scholar 

  11. El'chaninov, V.V., Syrodel. Maslodel., 2006, no. 4, pp. 42–44.

  12. El'chaninov, V.V., Umanskii, M.S., Belov, A.N., Koval’, A.D., and Shelepov, V.G., Syrodel. Maslodel., 2005, no. 4, pp. 13–16.

  13. Laemmli, U.K., Nature, 1970, vol. 227, no. 5259, pp. 680–685.

    Article  CAS  Google Scholar 

  14. Bradford, M.M., Anal. Biochem., 1976, vol. 72, nos. 1–2, pp. 248–254.

    Article  CAS  Google Scholar 

  15. Lobstein, J., Emrich, C.A., Jeans, C., Faulkner, M., Riggs, P., and Berkmen, M., Microb. Cell Fact., 2012, vol. 11, no. 1, p. 56.

    Article  CAS  Google Scholar 

  16. Studier, F.W. and Moffatt, B.A., J. Mol. Biol., 1986, vol. 189, no. 1, pp. 113–130.

    Article  CAS  Google Scholar 

  17. Chen, H., Zhang, G., Zhang, Y., Dong, Y., and Yang, K., Biochemistry, 2000, vol. 39, no. 40, pp. 12140–12148.

    Article  CAS  Google Scholar 

  18. Wei, C., Zhang, Y., and Yang, K., J. Protein Chem., 2000, vol. 19, no. 6, pp. 449–456.

    Article  CAS  Google Scholar 

  19. Eskandari, M.H., Hosseini, A., Zarasvand, S.A., and Aminlari, M., Food Biotechnol., 2012, vol. 26, no. 2, pp. 143–153.

    Article  CAS  Google Scholar 

  20. Singh, T.K., Drake, M.A., and Cadwallader, K.R., Compr. Rev. Food Sci. Food Saf., 2003, vol. 2, no. 4, pp. 166–189.

    Article  Google Scholar 

  21. Harboe, M., Broe, M.L., and Qvist, K.B., Technology of Cheesemaking, New York: Wiley, 2010.

    Google Scholar 

  22. Costabel, L.M., Bergamini, C.V., Pozza, L., Cuffia, F., Candioti, M.C., and Hynes, E., J. Dairy Res., 2015, vol. 82, no. 3, pp. 375–384.

    Article  CAS  Google Scholar 

  23. Mane, A. and McSweeney, P.L.H., J. Food Biochem., 2020, vol. 44, no. 1. e13101. https://doi.org/10.1111/jfbc.13101

    Article  PubMed  Google Scholar 

  24. Gumus, P. and Hayaloglu, A.A., J. Dairy Sci., 2019, vol. 102, no. 7, pp. 5945–5956.

    Article  CAS  Google Scholar 

  25. Lamichhane, P., Sharma, P., Kennedy, D., Kelly, A.L., and Sheehan, J.J., Food Res. Int., 2019, vol. 125, p. 108525. https://doi.org/10.1016/j.foodres.2019.108525

    Article  CAS  PubMed  Google Scholar 

  26. Masotti, F., Hogenboom, J.A., Rosi, V., De Noni, I., and Pellegrino, L., Int. Dairy J., 2010, vol. 20, no. 5, pp. 352–359.

    Article  CAS  Google Scholar 

  27. D'Incecco, P., Limbo, S., Hogenboom, J., Rosi, V., Gobbi, S., and Pellegrino, L., Foods, 2020, vol. 9, p. 268. https://doi.org/10.3390/foods9030268

    Article  CAS  PubMed Central  Google Scholar 

  28. Sforza, S., Cavatorta, V., Lambertini, F., Galaverna, G., Dossena, A., and Marchelli, R., J. Dairy Sci., 2012, vol. 95, no. 7, pp. 3514–3526.

    Article  CAS  Google Scholar 

  29. Maiorov, A.A., Mironenko, I.M., and Baibikova, A.A., Syrodel. Maslodel., 2011, no. 2, pp. 19–23.

  30. Wang, N., Wang, K.Y., Li, G., Guo, W., and Liu, D., Protein Expr. Purif., 2015, vol. 111, pp. 75–81.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the State Task of the Ministry of Science and Education of the Russian Federation (topic no. FZMW-2020-0002, “Design of recombinant enzyme producers for the cheese-making industry”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Elchaninov.

Ethics declarations

The authors declare that they have no conflict of interest. The paper contains no experimentation involving animals or humans performed by any of the authors.

Additional information

Translated by E. Martynova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belenkaya, S.V., Shcherbakov, D.N., Balabova, D.V. et al. Production of Maral (Cervus elaphus sibiricus Severtzov) Recombinant Chymosin in the Prokaryotic Expression System and the Study of the Aggregate of Its Biochemical Properties Relevant for the Cheese-Making Industry. Appl Biochem Microbiol 56, 647–656 (2020). https://doi.org/10.1134/S0003683820060034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820060034

Keywords:

Navigation