Skip to main content
Log in

Characterization of Ni-resistant bacteria in the rhizosphere of the hyperaccumulator Alyssum murale by 16S rRNA gene sequence analysis

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The diversity of 184 isolates from rhizosphere and bulk soil samples taken from the Ni hyperaccumulator Alyssum murale, grown in a Ni-rich serpentine soil, was determined by 16S rRNA gene analysis. Restriction digestion of the 16S rRNA gene was used to identify 44 groups. Representatives of each of these groups were placed within the phyla Proteobacteria, Firmicutes and Actinobacteria by 16S rRNA gene sequence analysis. By combining the 16S rRNA gene restriction data with the gene sequence analysis it was concluded that 44.6% (82/184) of the isolates were placed within the phylum Proteobacteria, among these 35.9% (66/184) were placed within the class α-Proteobacteria, and 20.7% (38/184) had 16S rRNA gene sequences indicative of bacteria within genera that form symbioses with legumes (rhizobia). Of the remaining isolates, 44.6% (82/184) and 5.4% (10/184) were placed within the phyla Actinobacteria and Firmicutes, respectively. No placement was obtained for a small number (10/184) of the isolates. Bacteria of the phyla Proteobacteria and Actinobacteria were the most numerous within the rhizosphere of A. murale and represented 32.1% (59/184) and 42.9% (79/184) of all isolates, respectively. The approach of using 16S rRNA gene sequence analysis in this study has enabled a comprehensive characterization of bacteria that predominate in the rhizosphere of A. murale growing in Ni-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abou-Shanab RI, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003a) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    Article  CAS  Google Scholar 

  • Abou-Shanab RI, Delorme TA, Angle JS, Chaney RL, Ghanem K, Moawad H, Ghozlan HA (2003b) Phenotypic characterization of microbes in the rhizosphere of Alyssum murale. Int J Phytoremediation 5:367–380

    CAS  Google Scholar 

  • Abou-Shanab RA, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Article  CAS  Google Scholar 

  • Altschul SF, Thomas LM, Alejandro AS, Jinghui Z, Zheng Z, Webb M, David JL (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Amann G, Stetter KO, Llobet-Brossa E, Amann R, Anton J (2000) Direct proof for the presence and expression of two 5% different 16S rRNA genes in individual cells of Haloarcula marismortui. Extremophiles 4:373–376

    Article  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants, which hyperaccumulate metallic elements—a review of their distribution, ecology, and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Blake RC, Choate DM, Bardhan S, Revis N, Barton LL, Zocco TG (1993) Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ Toxicol Chem 12:1365–1376

    Article  CAS  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  Google Scholar 

  • Carbon C, Philips J, Fu ZY, Squires C, Squires CL (1979) The complete nucleotide sequence of ribosomal 16S rRNA from Escherichia coli. EMBO J 11:4175–4185

    Google Scholar 

  • de Souza MP, Chu D, Zhao M, Zayed AM, Steven ER, Schichrus D, Terry N (1999a) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–573

    Article  Google Scholar 

  • de Souza MP, Huang CPA, Chee N, Terry N (1999b) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209:259–263

    Article  Google Scholar 

  • Delorme TA, Gagliardi JV, Angle JS, van Berkum P, Chaney RL (2003) Phenotypic and genetic diversity of rhizobia isolated from nodules of clover grown in a Zn and Cd contaminated soil. Soil Soc Sci Am J 67:1746–1754

    CAS  Google Scholar 

  • Dreyden SC, Kaplan S (1990) Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides. Nucleic Acids Res 18:7267–7277

    Article  Google Scholar 

  • Eardly BD, Wang FS, van Berkum P (1996) Corresponding 16S rRNA segments in Rhizobiaceae and Aeromonas yield discordant phylogenies. Plant Soil 186:69–74

    Article  CAS  Google Scholar 

  • Heyndrickx M, Vauterin L, Vandamme P, Kersters K, de Vos P (1996) Applicability of combined amplified ribosomal DNA restriction analysis (ARDRA) patterns in bacterial phylogeny and taxonomy. J Microbial Methods 26:247–259

    Article  CAS  Google Scholar 

  • John SG, Ruggiero CE, Hersman LE, Tung CS, Neu MP (2001) Siderophore mediated plutonium accumulation by Microbacterium flavescens (JG-9). Environ Sci Technol 35(14):2942–2948

    Article  CAS  Google Scholar 

  • Kaiser O, Puhler A, Selbitschka W (2001) Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv. Westar) employing cultivation-dependent and cultivation-independent approaches. Microb Ecol 42:136–149

    CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (1993) MEGA: molecular evolutionary genetics analysis, version 1.01. Institute of Molecular Evolutionary Genetics, Pennsylvania State University, USA

    Google Scholar 

  • Laguerre G, Allard M, Revoy F, Amarger N (1994) Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 60:56–63

    CAS  Google Scholar 

  • Laguerre G, van Berkum P, Amarger N, Prevost D (1997) Genetic diversity of rhizobial symbionts isolated from legume species within the genera Astragalus, Oxytropis, and Onobrychis. Appl Environ Microbiol 63:4748–4758

    CAS  Google Scholar 

  • Lodewyckx C, Mergeay M, Vangronsveld H, Clijsters H, van der Lelie D (2002) Isolation, characterization and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp calaminara. Int J Phytoremediation 4:101–105

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20

    Article  CAS  Google Scholar 

  • Nicholas KB, Nicholas HB (1997) Alignment editor and shading utility, 2.6.001 Ed. http://www.psc.edu/biomed/genedoc

  • Park CH, Keyhan M, Matin A (1999) Purification and characterization of chromate reductase in Pseudomonas putida. Abstr Gen Meet Am Soc Microbiol 99:536

    Google Scholar 

  • Pattanapipitpaisal P, Brown NL, Macaskie LE (2001) Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site. Appl Microbiol Biotechnol 57(1–2):257–261

    CAS  Google Scholar 

  • Qiu X, Wu L, Huang H, Mcdonel PE, Palumbo AV, Tiedje JM, Zhou J (2001) Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl Environ Microbiol 67:880–887

    Article  CAS  Google Scholar 

  • Rainey FA, Ward-Rainey NL, Janssen PH, Hippe H, Stackebrandt E (1996) Clostridium paradoxum DSM 7308T contains multiple 16S rRNA genes with heterogeneous intervening sequences. Microbiology 142:2087–2095

    Article  CAS  Google Scholar 

  • Rajkumar M, Freitas H (2008) Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99:3491–3498

    Article  CAS  Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley Inc., USA, pp 193–229

    Google Scholar 

  • Rhodes MW, Kator H, Kotob S, van Berkum P, Kaattari I, Vogelbein W, Quinn F, Floyd MM, Butler WR, Ottinger CA (2003) Mycobacterium shottsii sp. nov., a slowly growing species isolated from Chesapeake Bay striped bass (Morone saxatilis). Int J Syst Evol Microbiol 53:421–424

    Article  CAS  Google Scholar 

  • Salt DE, Krämer U (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley & Sons Inc., USA, pp 231–246

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego

    Google Scholar 

  • Sneath PHA (1993) Evidence from Aeromonas for genetic crossing-over in ribosomal sequences. Int J Syst Bacteriol 43:626–629

    CAS  Google Scholar 

  • Suominen L, Jussila MM, Makelinen K, Romntshuk M, Lindstrom K (2000) Evaluation of the Galega-Rhizobium galegae system for the bioremediation of oil contaminated soil. Environ Pollut 107:239–244

    Article  CAS  Google Scholar 

  • Terefework Z, Nick G, Suomalainene S, Paulin L, Lindstrom K (1998) Phylogeny of Rhizobium galegae with respect to other rhizobia and agrobacteria. Int J Syst Bacteriol 48:349–356

    Google Scholar 

  • van Berkum P, Fuhrmann JJ (2000) Evolutionary relationships among the soybean bradyrhizobia reconstructed from 16S rRNA gene and internally transcribed spacer region sequence divergence. Int J Syst Evol Microbiol 50:2165–2172

    Google Scholar 

  • van Berkum P, Beyene D, Eardly BD (1996) Phylogenetic relationships among Rhizobium species nodulating the common bean (Phaseolus vulgaris L.). Int J Syst Bacteriol 46:240–244

    Article  Google Scholar 

  • Wang Y, Zhang Z (2000) Comparative sequence analyses reveal frequent occurrence of short segments containing an abnormally high number of non-random base variations in bacterial rRNA genes. Microbiology 146:2845–2854

    CAS  Google Scholar 

  • Wang Y, Zhang Z, Ramanan N (1997) The actinomycete Thermobispora bispora contains two distinct types of transcriptionally active 16S rRNA genes. J Bacteriol 179:3270–3276

    CAS  Google Scholar 

  • Wenzel WW, Lombi E, Adriano DC (1999) Biogeochemical processes in the rhizosphere: role in phytoremediation of metal polluted sites. In: Prasad MNP, Hagemeyer J (eds) Heavy metal stress in plants-from molecules to ecosystems. Springer, Heidelberg, Berlin, New York, pp 273–303

    Google Scholar 

  • Yap WH, Zhang Z, Wang Y (1999) Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena. J Bacteriol 181:5201–5209

    CAS  Google Scholar 

  • Zayed AM, Terry N (1994) Selenium volatilization in roots and shoots: effects of shoot removal and sulfate level. J Plant Physiol 143:8–14

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. I. Abou-Shanab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abou-Shanab, R.A.I., van Berkum, P., Angle, J.S. et al. Characterization of Ni-resistant bacteria in the rhizosphere of the hyperaccumulator Alyssum murale by 16S rRNA gene sequence analysis. World J Microbiol Biotechnol 26, 101–108 (2010). https://doi.org/10.1007/s11274-009-0148-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0148-6

Keywords

Navigation