Skip to main content
Log in

Microbial community study of the iron ore concentrate of the Sishen Iron Ore Mine, South Africa

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

As a result of the advancing global technologies and civilisation, there has been a progressive depletion of high-grade mineral deposits. Consequently, it has become increasingly important to process lower-grade ores. Phosphorous (P) and particular potassium (K) contained in the iron ore concentrates of the Sishen Iron Ore Mine have a detrimental effect on the steel making process, whereby these alkali’s cause cracks to form in the refractory lining of blast furnaces. It is initially essential to determine which microbes are indigenously present at the Sishen Iron Ore Mine before strategising how best to employ them to industrial advantage. Therefore, the objective of this study was to determine which microorganisms are indigenous to the iron ore and soil of the Sishen Iron Ore Mine. The bacterial 16S PCR and fungal ITS PCR revealed several bacterial and fungal species present in the mine environment. The bacterial isolates were found to be closely related to Herbaspirillum species, as well as Acidithiobacillus ferrooxidans, while the fungal isolates were closely related to Aureobasidium pullulans, Phaeosphaeria nodorum, Aspergillus fumigatus, and Candida parapsilosis. Isolating A. fumigatus from the iron ore/soil of the mine may indicate that A. niger, the most common fungi used for the production of citric acid, can adapt to the stringent mine environment. This would allow the application of A. niger for the production of citric acid, which may be used for the chemical leaching of the P and K from the iron ore concentrate of the Sishen Iron Ore Mine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banks MK, Alleman J (2002) Microbial indicators of bioremediation potential and success. In: Hazardous substance research centres. Georgia Tech Research Corporation. http://www.hsrc.org/mw-microbial.html. Cited 24 Oct 2007

  • Connon SA, Tovanabootr A, Dolan M, Vergin K, Giovannoni SJ, Semprini L (2005) Bacterial community composition determined by culture-independent and -dependent methods during propane-stimulated bioremediation in trichloroethene-contaminated groundwater. Environ Microbiol 7(2):165–178. doi:10.1111/j.1462-2920.2004.00680.x

    Article  CAS  Google Scholar 

  • Cullings KW (1992) Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. Mol Ecol 1:233–240. doi:10.1111/j.1365-294X.1992.tb00182.x

    Article  CAS  Google Scholar 

  • Das A, Mishra AK, Roy P (1992) Anaerobic growth on elemental sulfur using dissimilar iron reduction by autotrophic Thiobacillus ferrooxidans. FEMS Microbiol Lett 97:167–172. doi:10.1111/j.1574-6968.1992.tb05457.x

    Article  CAS  Google Scholar 

  • Deshpande MS, Rale VB, Lynch JM (1992) Aureobasidium pullulans in applied microbiology: a status report. Enzyme Microb Technol 14:514–527. doi:10.1016/0141-0229(92) 90122-5

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dukino RD, England BM, Kneeshaw M (2000) Phosphorous distribution in BIF-derived iron ores of Hamersley Province, Western Australia. Trans Instn Min Metall (Sect B Appl Earth Sci) 109:B168–B176

    CAS  Google Scholar 

  • Fjellbirkeland A, Torsvik V, Øvreås L (2001) Methanotrophic diversity in an agricultural soil as evaluated by denaturing gradient gel electrophoresis profiles of pmoA, mxaF and 16S rDNA sequences. Antonie Van Leeuwenhoek 79:209–217. doi:10.1023/A:1010221409815

    Article  CAS  Google Scholar 

  • Gadd GM, White C, Mow JLII (1987) Heavy metal uptake by intact cells and protoplasts of Aureobasidium pullulans. FEMS Microbiol Lett 45:261–267. doi:10.1111/j.1574-6968.1987.tb02375.x

    Article  CAS  Google Scholar 

  • Gao M, Liu P, Liu Y, Dai S, Peng K, Xie W (2005) A novel magnetotactic bacterial species, Herbaspirillum magnetovibrio from iron ore soil. GenBank accession number: DQ103258. National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov. Cited 22 Oct 2007

  • Gautret P, Rodier MH, Kauffmann-Lacroix C, Jacquemin JL (2000) Case report and review. Onychomycosis due to Candida parapsilosis. Mycoses 43:433–435. doi:10.1111/j.1439-0507.2000.00602.x

    Article  CAS  Google Scholar 

  • Glazer AN, Nikaido H (1995) Application of biotechnology for mineral processing. In: Microbial biotechnology: fundamentals of applied microbiology. Freeman, New York, pp 268–287

  • Goto CE, Barbosa EP, Kistner LCL, Moreira FG, Lenartocicz V, Peralta RM (1998) Production of amylase by Aspergillus fumigatus utilizing α-methyl-D-glycoside, a synthetic analogue of maltose, as substrate. FEMS Microbiol Lett 167:139–143

    CAS  Google Scholar 

  • Gupta S, Sharma CB (2002) Biochemical studies of citric acid production and accumulation by Aspergillus niger mutants. World J Microbiol Biotechnol 18:379–383. doi:10.1023/A:1015521506052

    Article  CAS  Google Scholar 

  • Hamada N, Deguchi K, Ohmoto T, Sakai K, Ohe T, Yoshizumi H (2000) Ascorbic acid stimulation of production of a highly branched β-1, 3-glucan by Aureobasidium pullulans K-1-oxalic acid, a metabolite of ascorbic acid as the stimulating substance. Biosci Biotechnol Biochem 64:1801–1806. doi:10.1271/bbb.64.1801

    Article  CAS  Google Scholar 

  • Horan J (1999) Thiobacillus ferrooxidans. Colorado school of mines, Golden, Colorado. http://www.mines.edu/fs_home/jhoran/ch126/thiobaci.htm. Cited 24 Oct 2007

  • Im WT, Bae HS, Yokota A, Lee ST (2003) Herbaspirillum chlorophenolicum sp. nov., a 4-chlorophenol-degrading bacterium. Int J Syst Evol Microbiol 54(Pt 3):851–855. doi:10.1099/ijs.0.02812-0

    Google Scholar 

  • Jian N, Sharma DK (2004) Biohydrometallurgy for non-sulphidic minerals—a review. Geomicrobiol J 21:135–144. doi:10.1080/01490450490275271

    Article  CAS  Google Scholar 

  • Jianlong W (2000) Enhancement of citric acid production by Aspergillus niger using n-dodecane as an oxygen vector. Proc Biochem 35:1079–1083

    Article  Google Scholar 

  • Kiffer-Moreira T, De Sá Pinheiro AA, Alviano WS, Barbosa FM, Souto-Padrón T, Nimrichter L et al (2007) An ectophosphatase activity in Candida parapsilosis influences the interaction of fungi with epithelial cells. FEMS Yeast Res 7:621–628. doi:10.1111/j.1567-1364.2007.00223.x

    Article  CAS  Google Scholar 

  • Kniemeyer O, Probian C, Rossello-Mora R, Harder J (1999) Anaerobic mineralization of quaternary carbon atoms: isolation of denitrifying bacteria on dimethylmalonate. Appl Environ Microbiol 65(8):3319–3324

    CAS  Google Scholar 

  • Koizumi Y, Kelly JJ, Nakagawa T, Urakawa H, El-Fantroussi S, Al-Muzaini S et al (2002) Parallel characterisation of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridisation, and DNA microarray technology. Appl Environ Microbiol 68:3215–3225. doi:10.1128/AEM.68.7.3215-3225.2002

    Article  CAS  Google Scholar 

  • Krcmery V, Barnes AJ (2002) Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect 50:243–260. doi:10.1053/jhin.2001.1151

    Article  CAS  Google Scholar 

  • Krogh N, Olson J, Jensen B, Reeslev M (1998) Uptake of Zn2+ by yeast and mycelial growth of Aureobasidium pullulans grown in chemostat culture. FEMS Microbiol Lett 163:249–253. doi:10.1111/j.1574-6968.1998.tb13053.x

    Article  CAS  Google Scholar 

  • Lalaoui F, Halama P, Dumortier V, Paul B (2000) Cell wall-degrading enzymes produced in vitro by isolates of Phaeosphaeria nodorum differing in aggressiveness. Plant Pathol 49:727–733. doi:10.1046/j.1365-3059.2000.00491.x

    Article  CAS  Google Scholar 

  • Lesniak W, Pietkiewicz J, Podgorski W (2002) Citric acid fermentation from starch and dextrose syrups by a trace metal resistant mutant of Aspergillus niger. Biotechnol Lett 24:1065–1067. doi:10.1023/A:1016030513270

    Article  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Ohmura N, Sasaki K, Matsumoto N, Saiki H (2002) Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. J Bacteriol 184:2081–2087. doi:10.1128/JB.184.8.2081-2087.2002

    Article  CAS  Google Scholar 

  • Pastor A, Gafa V, Boutonnat J, Grillot R, Ambroise-Thomas P, Aldebert D (2006) Intracellular oxidative response of human monocytes and granulocytes to different strains of Aspergillus fumigatus. Mycoses 49:73–79. doi:10.1111/j.1439-0507.2006.01188.x

    Article  Google Scholar 

  • Probian C, Wulfing A, Harder J (2003) Anaerobic mineralization of quaternary carbon atoms: isolation of denitrifying bacteria on pivalic acid (2, 2-dimethylpropionic acid). Appl Environ Microbiol 69(3):1866–1870. doi:10.1128/AEM.69.3.1866-1870.2003

    Article  CAS  Google Scholar 

  • Pronk JT, De Bruyn JC, Bos P, Kuenen JG (1992) Anaerobic growth of Thiobacillus ferrooxidans. Appl Environ Microbiol 58:2227–2230

    CAS  Google Scholar 

  • Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91. doi:10.1146/annurev.micro.56.012302.161052

    Article  CAS  Google Scholar 

  • Rawlings DE (2005) Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb Cell Fact 4:13–27. doi:10.1186/1475-2859-4-13

    Article  CAS  Google Scholar 

  • Siciliano SD, Germida JJ, Banks K, Greer CW (2003) Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Appl Environ Microbiol 69:483–489. doi:10.1128/AEM.69.1.483-489.2003

    Article  CAS  Google Scholar 

  • Stukenbrock EH, Banke S, McDonald BA (2006) Global migration patterns in the fungal wheat pathogen Phaeosphaeria nodorum. Mol Ecol 15:2895–2904

    Article  Google Scholar 

  • Surridge AKJ, Viljoen A, Crous PW, Wehner FC (2003) Identification of the pathogen associated with Sigatoka disease of banana in South Africa. Plant Pathol 32:27–31. doi:10.1071/AP02058

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876

    Article  CAS  Google Scholar 

  • Ueda T, Suga Y, Matsuguchi T (1995) Molecular phylogenetic analysis of a soil microbial community in a soybean field. Eur J Soil Sci 46:415–421. doi:10.1111/j.1365-2389.1995.tb01337.x

    Article  Google Scholar 

  • Valverde A, Velazquez E, Gutierrez C, Cervantes E, Ventosa A, Igual JM (2003) Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 53(Pt 6):1979–1983. doi:10.1099/ijs.0.02677-0

    Article  CAS  Google Scholar 

  • Vandenberghe LPS, Soccol CR, Pandey A, Lebeault JM (2000) Solid-state fermentation for the synthesis of citric acid by Aspergillus niger. Biores Technol 74:175–178

    Article  CAS  Google Scholar 

  • Viikari L, Kantelinen A, Sundquist J, Linko M (1994) Xylanases in bleaching: from an idea to the industry. FEMS Microbiol Rev 13:335–350. doi:10.1111/j.1574-6976.1994.tb00053.x

    Article  CAS  Google Scholar 

  • Weig M, Reichard U, Groß U (2001) Aspergillus fumigatus—virulence and opportunism? Mycoses 44:351–355. doi:10.1046/j.1439-0507.2001.00670.x

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) PCR protocols. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic Press, London, pp 315–322

    Google Scholar 

  • Widmer F, Shaffer BT, Porteous LA, Seidler RJ (1999) Analysis of nifH gene pool complexity in soil and litter at a Douglas fir forest site in the Oregon cascade mountain range. Appl Environ Microbiol 65:374–380

    CAS  Google Scholar 

  • Yoshikawa J, Amachi S, Shinoyama H, Fujii T (2006) Multiple β-fructofuranosidases by Aureobasidium pullulans DSM2404 and their roles in fructooligosaccharide production. FEMS Microbiol Lett 265:159–163. doi:10.1111/j.1574-6968.2006.00488.x

    Article  CAS  Google Scholar 

  • Yun JW, Lee MG, Song SK (1994) Continuous production of isomalto-oligosaccharides from maltose syrup by immobilized cells of permeabilized Aureobasidium pullulans. Biotechnol Lett 16:1145–1150. doi:10.1007/BF01020841

    Article  CAS  Google Scholar 

  • Yusfin YS, Chernousov PI, Garten V, Karpov YA, Petelin AL (1999) The role of alkali’s and conserving resources in blast-furnace smelting. Metallurgist 43:54–58. doi:10.1007/BF02463518

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, P.J., Cloete, T.E. Microbial community study of the iron ore concentrate of the Sishen Iron Ore Mine, South Africa. World J Microbiol Biotechnol 24, 2531–2538 (2008). https://doi.org/10.1007/s11274-008-9777-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9777-4

Keywords

Navigation