Skip to main content
Log in

Hydrogels based on u.v.-crosslinked poly(ethylene oxide) – matrices for immobilization of Candida boidinii cells for xylitol production

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Hydrogels based on high molecular weight poly(ethylene oxide) were synthesized by u.v.-irradiation of aqueous solutions in presence of the photoinitiator, (4-benzoylbenzyl)trimethylammonium chloride and different crosslinkers, poly(ethylene glycol), diacrylates and N,N′-methylenebisacrylamide. Candida boidinii cells were immobilized in these hydrogels and the gels were characterized in regards to gel fraction yield, degree of equilibrium swelling, shear storage and loss moduli. In addition, the number average molecular weight between crosslinks and the mesh size were estimated. The incorporated yeast cells considerably affected the viscoelastic properties of the gels. Immobilized C. boidinii cells were used for conversion of xylose to xylitol. Of the immobilized systems tested, only the system with poly(ethylene oxide) crosslinked with N,N′-methylenebisacrylamide exhibited xylitol production. The operational stability of this system was evaluated by seven repeated-batch runs performed in Erlenmeyer flasks in duration of 55 days. The progressive improvement of xylose consumption, up to 73.5%, stopped in the fifth cycle, after which it dropped to 42.7%. Although xylitol concentration never reached more than 4.2 g l−1, xylitol was produced in each of the seven cycles. The cell leakage of 1.8 g l−1 during the first 45 days, indicated very good stability of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BBTMAC:

(4-benzoylbenzyl)trimethylammonium chloride

BISAA:

N,N′-methylenebisacrylamide

ES:

Equilibrium swelling degree

\( {\text{ES}}^{{{\text{H}}_{{\text{2}}} {\text{O}}}} \) :

Equilibrium swelling degree in water

G′:

Shear storage modulus, Pa

G′′:

Loss modulus, Pa

GF:

Gel fraction yield, %

\( \overline{{M_{{\text{c}}} }} \) :

Number average molecular weight between crosslinks

PEG DA-575:

Poly(ethylene glycol) diacrylate 575

PEG DA-700:

Poly(ethylene glycol) diacrylate 700

PEO:

Poly(ethylene oxide)

PEO/BISAA:

Poly(ethylene oxide) crosslinked with N,N`-methylenebisacrylamide

PEO/PEG DA-575:

Poly(ethylene oxide) crosslinked with PEG DA-575

PEO/PEG DA-700:

Poly(ethylene oxide) crosslinked with PEG DA-700

SEM:

Scanning electron microscope

t :

Fermentation time, h or day

ξ :

Mesh size, nm

References

  • Alexandre E, Boudjema K, Schmitt B, Cinqualbre J, Jaeck D, Lux C, Isel F, Lutz PJ (2003) Poly(ethylene oxide) based hydrogels designed for artificial organs. Polymer Mater 89:240–241

    CAS  Google Scholar 

  • Angelova N, Hunkeler D (1999) Rationalizing the design of polymeric biomaterials. Trends Biotechnol 17:409–420

    Article  CAS  Google Scholar 

  • Bae SM, Park YC, Lee TH, Kweon DH, Choi J, Kim SH, Ryu YW, Seo JH (2004) Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations. Enzyme Microb Technol 35:545–549

    Article  CAS  Google Scholar 

  • Carvalho W, Santos JC, Canilha L, Silva SS, Perego P, Converti A (2005) Xylitol production from sugarcane bagasse hydrolysate. Metabolic behaviour of Candida guilliermondii cells entrapped in Ca-alginate. Biochem Eng J 25:25–31

    Article  CAS  Google Scholar 

  • Chung YS, Kim MD, Lee WJ, Ryu YW, Kim JH, Seo JH (2002) Stable expression of xylose reductase gene enhance xylitol production in recombinant Saccharomyces cerevisiae. Enzyme Microb Technol 30:809–816

    Article  CAS  Google Scholar 

  • Cunha MAA, Converti A, Santos JC, Silva SS (2006) Yeast immobilization in LentiKats®: a new strategy for xylitol bioproduction from sugarcane bagasse. World J Microbiol Biotechnol 22:65–72

    Article  CAS  Google Scholar 

  • Cunha MAA, Rodrigues RCB, Santos JC, Converti A, Silva SS (2007) Repeated-batch xylitol bioproduction using yeast cells entrapped in polyvinyl alcohol-hydrogel. Curr Microbiol 54:91–96

    Article  CAS  Google Scholar 

  • Doytcheva M, Dotcheva D, Stamenova R, Orahovats A, Tsvetanov Ch, Leder J (1997) Ultraviolet-induced crosslinking of solid poly(ethylene oxide). J Appl Polym Sci 64:2297–2307

    Article  Google Scholar 

  • Doycheva M, Petrova E, Stamenova R, Tsvetanov Ch, Riess G (2004) UV-induced cross-linking of poly(ethylene oxide) in aqueous solutions. Macromol Mater Eng 289:676–680

    Article  CAS  Google Scholar 

  • Eiselt P, Lee KY, Mooney DJ (1999) Rigidity of two-component hydrogels prepared from alginate and poly(ethylene glycol)-diamines. Macromolecules 32:5561–5566

    Article  CAS  Google Scholar 

  • El-Hady AA, El-Rehim HAA (2004) Production of prednisolone by Pseudomonas olevorans cells incorporated into PVP/PEO radiation crosslinked hydrogels. J Biomed Biotechnol 4:219–226

    Article  Google Scholar 

  • Emami SH, Salovey R (2003) Crosslinked Poly(ethylene oxide) Hydrogels. J Appl Polym Sci 88:1451–1455

    Article  CAS  Google Scholar 

  • Granström TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part II: biotechnological production and future application of xylitol. Appl Microbiol Biotechnol 74:273–276

    Article  CAS  Google Scholar 

  • Honkala S, Honkala E, Tynjala J, Kannas L (1999) Use of xylitol chewing gums among Finish schollchildren. Acta Odontol Scand 57:306–309

    Article  CAS  Google Scholar 

  • Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509

    Article  CAS  Google Scholar 

  • King NA, Craig SAS, Pepper T, Blundell JE (2005) Evaluation of the independent and combined effects of xylitol and polydextrose consumed as a snack on hunger and energy intake over 10 d. Br J Nutr 93:911–915

    Article  CAS  Google Scholar 

  • Kovari H, Pienihäkkinen K, Alanen P (2003) Use of xyitol chewing gum in daycare centers: a follow-up study in Savonlinna, Finland. Acta Odontol Scand 61:367–370

    Article  CAS  Google Scholar 

  • Lif Holgerson P, Stecksén-Blicks C, Sjöström I, Twetman S (2005) Effect of xylitol-containing gums on interdental plaque-pH in habitual xylitol consumers. Acta Odontol Scand 63:233–238

    Article  CAS  Google Scholar 

  • Mäkinen KK, Bennet CA, Hujoel PP, Isokangas PJ, Isotupa KP, Pape HR Jr (1995) Xylitol chewing gum and caries rates: a 40-monthy cohort study. J Dent Res 74:1904–1913

    Article  Google Scholar 

  • Manojlovic V, Djonlagic J, Obradovic B, Nedovic V, Bugarski B (2006) Investigations of cell immobilization in alginate: rheological and electrostatic extrusion studies. J Chem Technol Biotechnol 81:505–510

    Article  CAS  Google Scholar 

  • Mattilda PT, Knuuttila MLE, Svanberg MJ (1998) Dietary xylitol supplementation prevents osteoporotic changes in streptozotocin-diabetic rats. Metabolism 47:578–583

    Article  Google Scholar 

  • Melekaslan D, Kasapoglu F, Ito K, Yagci Y, Okay O (2004) Swelling and elasticity of hydrogels based on poly(ethylene oxide) macroinimer. Polymer Int 53:237–242

    Article  CAS  Google Scholar 

  • Ozturk V, Okay O (2002) Temperature sensitive poly(N-t-butylacrylamide-co-acrylamide) hydrogels: synthesis and swelling behaviour. Polymer 43:5017–5026

    Article  CAS  Google Scholar 

  • Parajo JC, Dominguez H, Dominguez JM (1998) Biotechnological production of xylitol. Part 1: interest of xylitol and fundamentals of its biosynthesis. Bioresour Technol 65:191–201

    Article  CAS  Google Scholar 

  • Povelainen M, Miasnikov AN (2007) Production of xylitol by metabolically engineered strains of Bacillus subtilis. J Biotechnol 128:24–31

    Article  CAS  Google Scholar 

  • Roca E, Meinander N, Hahn-Hagerdal B (1996) Xylitol production by immobilized recombinant Saccharomyces cerevisiae in a continuous packed-bead reactor. Biotechnol Bioeng 51:317–326

    Article  CAS  Google Scholar 

  • Rodrigues DCCA, Silva SS, Felipe MGA (1998) Using response surface methodology to evaluate xylitol production by Candida guilliermondii by fed-batch process with exponential feeding rate. J Biotechnol 62:73–77

    Article  CAS  Google Scholar 

  • Santos JC, Silva SS, Mussatto SI, Carvahlo W, Cunha MAA (2005) Immobilized cells cultivated in semi-continuous mode in fluidized bed reactor for xylitol production from sugarcane bagasse. World J Microbiol Biotechnol 21:531–535

    Article  CAS  Google Scholar 

  • Sarrouh BF, Santos DT, Silva SS (2007) Biotechnological production of xylitol ina three-phase fluidized bed bioreactor with immobilized yeast cells in Ca-alginate beads. Biotechnol J 2:759–763

    Article  CAS  Google Scholar 

  • Silva SS, Santos JC, Carvahlo W, Aracava KK, Vitol M (2003) Use of a fluidized bed reactor operated in semi-continuous mode in for xylose-to-xylitol conversion by Candida guilliermondii immobilized on porous glass. Process Biochem 38:903–907

    Article  CAS  Google Scholar 

  • Suryadi H, Katsuragi T, Yoshida N, Suzuki S, Tani Y (2000) Polyol production of culture of methanol-utilizing yeast. J Biosci Bioeng 89:236–240

    Article  CAS  Google Scholar 

  • Uhari M, Tapiainen T, Kontiokari T (2000) Xylitol in preventing acute otitis media. Vaccine 19:144–147

    Article  Google Scholar 

  • Vandeska E, Amartey S, Kuzmanova S, Jeffries TW (1995) Effects of environmental conditions on production of xylitol by Candida boidinii. World J Microbiol Biotechnol 11:213–218

    Article  CAS  Google Scholar 

  • Vandeska E, Amartey S, Kuzmanova S, Jeffries TW (1996) Fed-batch culture for xylitol production by Candida boidinii. Process Biochem 31:265–270

    Article  CAS  Google Scholar 

  • Winkelhausen E, Kuzmanova S (1998) Microbial conversion of D-xylose to xylitol. J Ferm Bioeng 86:1–14

    Article  CAS  Google Scholar 

  • Winkelhausen E, Pittman P, Kuzmanova S, Jeffries TW (1996) Xylitol formation by Candida boidinii in oxygen limited chemostat culture. Biotechnol Lett 18:753–758

    Article  CAS  Google Scholar 

  • Winkelhausen E, Amartey SA, Kuzmanova S (2004) Xylitol production from D-xylose at different oxygen transfer coefficients in a batch bioreactor. Eng Life Sci 4:150–154

    Article  CAS  Google Scholar 

  • Winkelhausen E, Jovanovic-Malinovska R, Velickova E, Kuzmanova S (2007) Sensory and microbial quality of a baked product containing xylitol as an alternative sweetener. Int J Food Prop 10:639–649

    Article  CAS  Google Scholar 

  • Wittlich P, Capan E, Schlieker M, Vorlop KD, Jahnz U (2004) Entrapment in lentikats, encapsulation of various biocatalysts – bacteria, fungi, yeast or enzymes into polyvinyl alcohol based hydrogel particles. In: Nedović V, Willaert R (eds) Fundamentals of cell immobilization biotechnology. Kluwer Academic Publishers, Amsterdam pp 53–63

    Google Scholar 

  • Yahashi Y, Hatsu M, Horitsu H, Kawai K, Suzuki T, Takamizawa K (1996) D-glucose feeding for improvement of xylitol productivity from D-xylose using Candida tropicalis immobilized on a non-woven fabric. Biotechnol Lett 18:1395–1400

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by SEE-ERA-NET program, project Immobilized yeast cells in hydrogel carriers for bioproduction of alcohols (RN 06-100031-10859).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Winkelhausen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkelhausen, E., Jovanovic-Malinovska, R., Kuzmanova, S. et al. Hydrogels based on u.v.-crosslinked poly(ethylene oxide) – matrices for immobilization of Candida boidinii cells for xylitol production. World J Microbiol Biotechnol 24, 2035–2043 (2008). https://doi.org/10.1007/s11274-008-9707-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9707-5

Keywords

Navigation