Skip to main content
Log in

Production of xylanase from a newly isolated Penicillium sp. ZH-30

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A new strain of Penicillium sp. ZH-30 that produces xylanase was isolated from soil. According to the morphology and comparison of internal transcribed spacer (ITS) rDNA gene sequence, the strain Penicillium sp. ZH-30 was identified as a strain of Penicillium oxalicum. When xylan or wheat bran was used as substrate at 30°C for 3 days under submerged cultivation, xylanase production was 5.3 and 13.3 U ml−1, respectively. The temperature and pH for optimum activity were 50°C and 5.0–6.0, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bedford MR, Classen HL (1992) The influence of dietary xylanase on intestinal viscosity and molecular weight distribution of carbohydrates in rye-fed broiler chick. In: Visser J, Beldman G, vanSomeren MAK, Voragen AGJ (eds) Xylans and xylanases. Elsevier, Amsterdam, pp. 361–370

    Google Scholar 

  • Belancic A, Scarpa J, Peirano A, Diaz R, Steiner J, Eyzaguirre J (1995) Penicillium purpurogenum produces several xylanases: purification and properties of two of the enzymes. J Biotechnol 41:71–79

    Article  PubMed  CAS  Google Scholar 

  • Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290

    Article  CAS  Google Scholar 

  • Breccia JD, Castro GR, Baigori MD, Sineriz F (1995) Screening of xylanolytic bacteria using a color plate method. J Appl Bacteriol 78:469–472

    Google Scholar 

  • Brown JA, Collin SA, Wood TM (1987) Development of a medium for high cellulase, xylanase and fl-glucosidase production by a mutant strain (NTG III/6) of the cellulolytic fungus Penicillium pinophilum. Enzyme Microbl Technol 9:355–360

    Article  CAS  Google Scholar 

  • Chung CT, Niemela SL, Miller RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Nat Acad Sci USA 86:2172–2175

    Article  PubMed  ADS  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissues. Phytochem Bull 19:11–15

    Google Scholar 

  • Erland S, Henrion B, Martin F, Glover LA, Alexander IJ (1994) Identification of the ectomycorrhizal basidiomycete tylospora-fibrillosa donk by RFLP analysis of the PCR-amplified ITS and IGS regions of ribosomal DNA. New Phytol 126:525–532

    Article  CAS  Google Scholar 

  • Farrell RL, Biely P, McKay DL (1996) Productionof hemicellulase by the fungus Penicillium kloeckeri. In: Srebotnik E, Messner K (eds) Biotechnology in the Pulp and Paper Industry. Proc. 6th Intern. Conf. Biotechnol. Pulp Paper Ind. Facultas-Universit∼itsvedag, Vienna, pp 485–489

    Google Scholar 

  • Funaguma T, Naito S, Morita M, Okumura M, Sugiura M, Hara A (1991) Purification and some properties of xylanase from Penicillium herquei banier and sartory. Agric Biol Chem 55:1163–1165

    CAS  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    PubMed  CAS  Google Scholar 

  • Haas H, Herfurth E, Stoffler G, Redl B (1992) Purification, characterization and partial amino acid sequences of a xylanase produced by Penicillium chrysogenum. Biochim et Biophys Acta 1117:279–286

    CAS  Google Scholar 

  • Kuhad RC, Singh A (1993) Lignocellulosic biotechnology: current and future prospects. Crit Rev Biotechnol 13:151–172

    CAS  Google Scholar 

  • Law BA (2002) The nature of enzymes and their action in foods. In: Whitehurst RJ, Law BA (eds) Enzymes in food technology. Sheffield Academic Press, Sheffield, pp. 1–18

    Google Scholar 

  • Lee SB, Taylor JW (1990) Isolation of DNA from fungal mycelia and single spores. In: Innis MA, Gelfand DH, Sninsky JS, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, USA, pp. 282–287

    Google Scholar 

  • Maat J, Roza M, Verbakel J, Stam H, daSilra MJS, Egmond MR, Hagemans MLD, vanGarcom RFM, Hessing JGM, vanDerhondel CAMJJ, vanRotterdam C (1992) In: Visser J, Beldman G, vanSomeren (eds) Xylanases and their application in bakery, Elsevier Science, Amsterdam, The Netherlands

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Milagres AMF, Lacis LS, Prade RA (1993) Characterization of xylanase production by a local isolate of Penicillium janthinellum. Enzyme Microb Technol 15:248–253

    Article  CAS  Google Scholar 

  • Mishra C, Seeta R, Rao M (1985) Production of xylanolytic enzymes in association with the cellulolytic activities of Penicillium funiculosum. Enzyme Microb Technol 7:295–299

    Article  CAS  Google Scholar 

  • Ninawe S, Kuhad RC (2005) Use of xylan-rich cost effective agro-residues in the production of xylanase by Streptomyces cyaneus SN32. J Appl Microbiol 99:1141–1148

    Article  PubMed  CAS  Google Scholar 

  • Oliveira LA, Porto ALF, Tambourgi EB (2006) Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes. Biores Technol 97:862–867

    Article  CAS  Google Scholar 

  • Palma MB, Milagres AMF, Prata AMR, Manchilha IM (1996) Influence of aeration and agitation rate on the xylanase activity from Penicillium janthinellum. Process Biochem 31:141–145

    Article  CAS  Google Scholar 

  • Srinivasan MC, Rele MV (1999) Microbial xylanases for paper industry. Current Sci 77:137–142

    CAS  Google Scholar 

  • Steiner J, Socha C, Eyzaguirre J (1994) Culture conditions for enhanced cellulase production by a native strain of Penicillium purpurogenum. World J Microbiol Biotechnol 10:280–284

    Article  CAS  Google Scholar 

  • Techapun C, Sinsuwongwat S, Poosaran N, Watanabe M, Sasaki K (2001) Production of a cellulase-free xylanase from agricultural waste materials by a thermotolerant Streptomyces sp. Biotechnol Lett 23:1685–1689

    Article  CAS  Google Scholar 

  • Tenkanen M, Viikari L, Buchert J (1997) Use of acid tolerant xylanase for bleaching of kraft pulp. Biotechnol Techniq 11:935–938

    Article  CAS  Google Scholar 

  • Vicuna R, Escobar F, Osses M, Jara A (1997) Bleaching of eucalyptus kraft pulp with commercial xylanase. Biotechnol Lett 19:575–578

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. New York Academic Press Inc., pp 315–322

  • Wong KKY, Saddler JN (1992) Trichoderma xylanases, their properties and purification. Crit Rev Biotechnol 12:413–435

    CAS  Google Scholar 

  • Xu Z, Bai Y, Xu X, Shi J, Tao W (2005) Production of alkali-tolerant cellulase-free xylanase by Pseudomonaas sp. WLUN024 with wheat bran as the main substrate. World J Microbiol Biotechnol 21:575–581

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Liu, Z., Cui, F. et al. Production of xylanase from a newly isolated Penicillium sp. ZH-30. World J Microbiol Biotechnol 23, 837–843 (2007). https://doi.org/10.1007/s11274-006-9307-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-006-9307-1

Keywords

Navigation