Skip to main content
Log in

Decomposition of dominant submerged macrophytes: implications for nutrient release in Myall Lake, NSW, Australia

  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Breakdown and nutrient dynamics of submerged macrophytes were studied in Myall Lake, Australia. Mass loss of Myriophyllum sulsagineum was the lowest (64.90%) among the studied macrophytes during the 322 days followed by charophytes (60.79%), whereas Najas marina and Vallisneria gigantea lost 91.15 and 86.02% of their respective initial mass during that time. The overall exponential breakdown rates of Najas marina and Vallisneria gigantea were similar, with k-values of 0.24 and 0.23 day−1, respectively. These rates were significantly higher than the break down rates of charophytes (0.007 day−1) and M. sulsagineum (0.008 day−1). During growth phase, water column depicted lower nutrient concentrations while during decay period, significant increase in water column nutrients resulted. Release of nutrients from decomposing macrophytes and incorporation of these nutrients into sedimentary phase as well as uptake of nutrients by the growing macrophytes, can present a considerable cycling pathway of nutrients in Myall lake system. The results of this study suggest that different submerged macrophytes may differ appreciably in quality and may exhibit different decomposition rates, patterns and nutrient dynamics in aquatic ecosystems in general, and Myall lakes in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C.N. Acharya (1935) ArticleTitleStudies on the decomposition of plant materials III Comparison of the course of decomposition of rice straw under anaerobic, aerobic and partially anaerobic conditions Biochem. J. 29 IssueID1 1116–1120 Occurrence Handle16745771 Occurrence Handle1:CAS:528:DyaA2MXksFajsg%3D%3D

    PubMed  CAS  Google Scholar 

  • InstitutionalAuthorNameAPHA (1995) Standard Methods for the Examination of Water and Waste Water EditionNumber19 American Public Health Association USA

    Google Scholar 

  • J. Armstrong W. Armstrong P.M. Beckett J.E. Halder S. Lythe R. Holt A. Sinclair (1996) ArticleTitlePathways of aeration and the mechanisms and beneficial effects of humidity and venture-induced convections in Phragmitis australis (Cav.) Trin. ex Steud Aquat. Bot. 54 177–197 Occurrence Handle10.1016/0304-3770(96)01044-3

    Article  Google Scholar 

  • T. Asaeda L.H. Nam (2002) ArticleTitleEfects of rhizome age on the decomposition rate of Phragmites australis rhizomes Hydrobiologia 485 205–208 Occurrence Handle1:CAS:528:DC%2BD38Xpt1Cit7s%3D Occurrence Handle10.1023/A:1021314203532

    Article  CAS  Google Scholar 

  • T. Asaeda V.K. Trung J. Manatunge T.V. Bon (2001) ArticleTitleModelling macrophyte-nutrient-phytoplankton interactions in shallow eutrophic lakes and evaluation of environmental impacts Ecol. Eng. 16 341–357 Occurrence Handle10.1016/S0925-8574(00)00120-8

    Article  Google Scholar 

  • T. Asaeda V.K. Trung J. Manatunge (2000) ArticleTitleModeling the effects of macrophyte growth and decomposition in the nutrient budget in shallow lakes Aquat. Bot. 68 217–237 Occurrence Handle10.1016/S0304-3770(00)00123-6

    Article  Google Scholar 

  • H. Bastardo C.J. Rivera (1986) ArticleTitleColonización y sucesión microbiana durante la decomposición de gramineas tropicales Acta Biol. Venez 12 66–71

    Google Scholar 

  • H. Bastardo (1979) ArticleTitleLaboratory studied on decomposition of littoral plants Pol. Arch. Hydrobiol. 26 267–299 Occurrence Handle1:CAS:528:DyaL3cXjt1On

    CAS  Google Scholar 

  • J.M. Battle T.B. Mihuc (2000) ArticleTitleDecomposition dynamics of aquatic macrophytes in the lower Atchafalayaa large floodplain river Hydrobiologia 418 123–136 Occurrence Handle10.1023/A:1003856103586

    Article  Google Scholar 

  • M.T.M. Bosman (1985) ArticleTitleSome effects of decay and weathering on the anatomical structure of the stem of Phragmites australis Trin. ex Steud Int. Ass. Wood. Anat. Bull. 6 165–170

    Google Scholar 

  • T.C.M. Brock J.J. Boon B.G.P. Paffen (1985) ArticleTitleThe effects of the season and of the water chemistry on the decomposition of Nymphaea alba L.; weight loss and pyrolysis spectrometry of the particulate matter Aquat. Bot. 21 197–229 Occurrence Handle10.1016/0304-3770(85)90001-4

    Article  Google Scholar 

  • S.R. Carpenter D.M. Lodge (1986) ArticleTitleEffects of submersed macrophytes on ecosystem processes Aquat. Bot. 26 341–376 Occurrence Handle10.1016/0304-3770(86)90031-8

    Article  Google Scholar 

  • S.R. Carpenter (1980) ArticleTitleEnrichment of Lake WingraWisconsin, by submerged macrophytes decay Ecology 61 1145 Occurrence Handle10.2307/1936834

    Article  Google Scholar 

  • S.R. Carpenter M.S. Adams (1979) ArticleTitleEffects of nutrients and temperature on decomposition of Myriophyllum spicatum L. in a hardwater eutrophic lake Limnol. Oceanogr. 24 520–528 Occurrence Handle1:CAS:528:DyaE1MXksFGnsLg%3D

    CAS  Google Scholar 

  • S.E. Davis C. Corronado-Molina D.L. Childers J.W. Day (2003) ArticleTitleTemporally dependent C, N and P dynamics associated with the decay of Rhizophora mangel L. leaf litter in oligotrophic mangrove wetlands of the Southern Everglades Aquatic Botany 75 199–215 Occurrence Handle1:CAS:528:DC%2BD3sXhtVagsr4%3D Occurrence Handle10.1016/S0304-3770(02)00176-6

    Article  CAS  Google Scholar 

  • F.P. Jr. Day (1982) ArticleTitleLitter decomposition rates in the seasonally flooded Great Dismal Swamp Ecology 63 670–678 Occurrence Handle1:CAS:528:DyaL38XksVerur0%3D Occurrence Handle10.2307/1936787

    Article  CAS  Google Scholar 

  • S. Enríquez C.M. Duarte K. Sand-Jensen (1993) ArticleTitlePatterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content Oecologia 94 457–471 Occurrence Handle10.1007/BF00566960

    Article  Google Scholar 

  • T.W. Federle V.L. McKinley J.R. Vestal (1982) ArticleTitleEffects of nutrient enrichment on the colonization and decomposition of plant detritus by the microbiota of an arctic lake Can. J. Microbiol. 28 1199–1205 Occurrence Handle1:CAS:528:DyaL38XlsVWlsro%3D Occurrence Handle10.1139/m82-178

    Article  CAS  Google Scholar 

  • A. Gallardo J. Merino (1993) ArticleTitleLeaf decomposition in two Mediterranean ecosystems of southwest Spain: influence of substrate quality Ecology 74 152–161 Occurrence Handle10.2307/1939510

    Article  Google Scholar 

  • M.O. Gessner E. Chauvet (1994) ArticleTitleImportance of stream microfungi in controlling breakdown rates of leaf litter Ecology 75 1807–1817 Occurrence Handle10.2307/1939639

    Article  Google Scholar 

  • M.O. Gessner (2000) ArticleTitleBreakdown and nutrient dynamics of submerged phragmites shoots in the littoral zone of a temperate hardwater lake Aquatic Botany 66 9–20 Occurrence Handle10.1016/S0304-3770(99)00022-4

    Article  Google Scholar 

  • Godshalk G.L. and Barko J.W. 1985. Vegetative succession and decomposition in reservoirs. In: Gunnison D. (eds) Microbial Processes in Reserviors. Dev. Hydrobiol. 27: 59–77.

  • G.L. Godshalk R.G. Wetzel (1978) ArticleTitleDecomposition of aquatic Angiosperms. Zostera marina L. and a conceptual model of decomposition Aquat. Bot. 5 329–354 Occurrence Handle1:CAS:528:DyaE1MXhslCgurY%3D Occurrence Handle10.1016/0304-3770(78)90075-X

    Article  CAS  Google Scholar 

  • L.B. Harry A.P. Michael (1981) ArticleTitleWater column impacts of macrophytes decomposition beneath fiberglass screens Aquat. Bot. 14 15–27

    Google Scholar 

  • C. Howard-Williams B.R. Allanson (1981) ArticleTitlePhosphorous cycling in a dense Potamogeton pectinatus L. bed Oecologia 49 56–66 Occurrence Handle10.1007/BF00376898

    Article  Google Scholar 

  • J.G. Kim (2001) ArticleTitleDecomposition of Carex and Numpha plants in a Subalpine marsh J. Plant Biol. 44 IssueID2 73–80 Occurrence Handle10.1007/BF03030278

    Article  Google Scholar 

  • C.J. Kok G. Van der Velde (1994) ArticleTitleDecomposition and macroinvertebratic colonization of aquatic and terrestrial leaf material in alkaline and acid still water Freshw. Biol. 31 65–75 Occurrence Handle1:CAS:528:DyaK2cXivFCnt78%3D Occurrence Handle10.1111/j.1365-2427.1994.tb00839.x

    Article  CAS  Google Scholar 

  • Lan N.K., Asaeda T. and Manatunge J. 2005. Decomposition of aboveground and below ground organs of wild rice (Zizania latifolia): mass loss and nitrogen changes. Aquat. Ecol. (in press).

  • W.F. Masifiwa W. Okello H. Ochieng E. Ganda (2004) ArticleTitlePhosphorus release from decomposing water hyacinth and effects of decomposition on water quality Uganda J. Agric. Sci. 9 389–395

    Google Scholar 

  • J.M. Melillo R.J. Naiman J.D. Aber A.E. Linkins (1984) ArticleTitleFactors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams Bull. Mar. Sci. 35 341–356

    Google Scholar 

  • J. Muphy JP. Riley (1962) ArticleTitleA modified single solution method for the determination of phosphate in natural waters Anal. Chim. Acta 27 31–36 Occurrence Handle10.1016/S0003-2670(00)88444-5

    Article  Google Scholar 

  • J.D. Newbold J.W. Elwood M.S. Schulzer R.W. Stark J.C. Barmeier (1983) ArticleTitleContinuous ammonium enrichment of a woodland stream: Uptake kinetics, leaf decomposition, and nitrification Freshwater Biol. 13 193–204 Occurrence Handle1:CAS:528:DyaL3sXit1Wnsrk%3D Occurrence Handle10.1111/j.1365-2427.1983.tb00671.x

    Article  CAS  Google Scholar 

  • R.A. Ogwada K.R. Reddy D.A. Graetz (1984) ArticleTitleEffect of aeration and temperature on nutrient regeneration from selected aquatic macrophytes Journal of Environmental quality 13 IssueID2 239–243 Occurrence Handle1:CAS:528:DyaL2cXitVKlu70%3D Occurrence Handle10.2134/jeq1984.132239x

    Article  CAS  Google Scholar 

  • T.A. Pagioro S.M. Thomaz (1998) ArticleTitleLoss of weight and concentration of carbon nitrogen and phosphorus during decomposition of Eichhornia azurea in the floodplain of the upper Paraná riverBrazil Rev. Bras. Biol. 58 603–608 Occurrence Handle10.1590/S0034-71081998000400007

    Article  Google Scholar 

  • B.J. Peterson L. Deegan J. Helfrich J.E. Hobbie M. Hullar B. Moller T.E. Ford A. Hershey G. Hiltner M.A. Kipphut D.M. Lock V. Fiebig M.C. McKinely J.R. Miller R. Ventullo G. Volk (1993) ArticleTitleBiological responses of a tundra river to fertilization Ecology 74 653–672 Occurrence Handle1:CAS:528:DyaK3sXisVShtb8%3D Occurrence Handle10.2307/1940794

    Article  CAS  Google Scholar 

  • Pieczynska E. 1990. Lentic aquatic-terrestrial ecotones: their structure, functions and importance, pp103–140. In: Naiman R.J. and Decamps H. (eds). The ecology and management of aquatic-terrestrial ecotones, R.J. Naiman & H. Decamps (eds.), UNESCO and Parthenon Publ. 103–140.

  • K.R. Reddy P.D. Sacco (1981) ArticleTitleDecomposition of water hyacinth in agricultural drainage water J. Environ. Qual. 10 IssueID2 228–234 Occurrence Handle1:CAS:528:DyaL3MXlt1SksbY%3D

    CAS  Google Scholar 

  • P.H. Rich R.G. Wetzel (1978) ArticleTitleDetritus in the lake ecosystem Am. Nat. 112 57–71 Occurrence Handle10.1086/283252

    Article  Google Scholar 

  • C.J. Richardson (1994) ArticleTitleEcological functions and human values in wetlands: a framework for assessing forestry impacts Wetlands 14 1–9 Occurrence Handle10.1007/BF03160616

    Article  Google Scholar 

  • R.T. Robert R.B. Lacy M.B. Mark J.D. Graham (1985) ArticleTitleBiomass production and nutrient cycling in aquatic macrophytes communities of Chowan riverNorth Carolina Aquat. Bot. 22 IssueID3–4 231–252

    Google Scholar 

  • K.P. Sharma P.K. Goel (1986) ArticleTitleStudies on decomposition of two species of Salvinia Hydrobiologia 13 IssueID1 57–61 Occurrence Handle10.1007/BF00008324

    Article  Google Scholar 

  • Siong K. and Asaeda T. Does Calcite encrustation in Chara provide a phosphorus nutrient sink?. J. Environ. Qual. (in press).

  • M.J. Swift O.W. Heal J.M. Anderson (1979) Decomposition in Terrestrial Ecosystems University of California press Berkeley, California, USA 372

    Google Scholar 

  • C.A. Villar L. Cabo Particlede P. Vaithiyanathan C. Bonetto (2001) ArticleTitleLitter decomposition of emergent macrophytes in a floodplain marsh of the Lower Parana’ River Aquat. Bot. 70 105–116 Occurrence Handle10.1016/S0304-3770(01)00149-8

    Article  Google Scholar 

  • J.R. Webster E.F. Benfield (1986) ArticleTitleVascular plant breakdown in freshwater ecosystems Ann. Rev. Ecol. Syst. 17 567–594 Occurrence Handle10.1146/annurev.es.17.110186.003031

    Article  Google Scholar 

  • J. Wilson (2004) The effect of a runoff event on the ecology and chemistry of Myall Lakes: Changes in water quality, nutrients and phytoplankton assemblages Center for Natural Resources, NSW Department of Infrastructure, Planning and Natural Resources Paramatta

    Google Scholar 

  • D.A. Wrubleski H.R. Murkin A.G. Valk ParticleVan der J.N. Nelson (1997) ArticleTitleDecomposition of emergent macrophytes roots and rhizomes in a northern prairie marsh Aquat. Bot. 58 121–134 Occurrence Handle10.1016/S0304-3770(97)00016-8

    Article  Google Scholar 

  • Y. Xie D. Yu B. Ren (2004) ArticleTitleEffects of nitrogen and phosphorus availability on the decomposition of aquatic plants Aquatic Botany 80 29–37 Occurrence Handle10.1016/j.aquabot.2004.07.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Asaeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shilla, D., Asaeda, T., Fujino, T. et al. Decomposition of dominant submerged macrophytes: implications for nutrient release in Myall Lake, NSW, Australia. Wetlands Ecol Manage 14, 427–433 (2006). https://doi.org/10.1007/s11273-006-6294-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-006-6294-9

Keywords

Navigation